Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 6. РАСКРЫТИЕ СТАТИЧЕСКОЙ НЕОПРЕДЕЛИМОСТИ СТЕРЖНЕВЫХ СИСТЕМ МЕТОДОМ СИЛ

6.1. Связи, накладываемые на систему. Степень статической неопределимости

Выше (в гл. 1 и 2) были частично затронуты вопросы, связанные с понятием статической неопределимости. Для решения большинства встречающихся на практике задач описанные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих методах раскрытия статической неопределимости стержневых систем.

Под стержневой системой в широком смысле слова понимается всякая конструкция, состоящая из элементов, имеющих форму стержня. Если элементы конструкции работают в основном на растяжение или сжатие, то стержневая система называется фермой (рис. 6.1).

Ферма состоит из прямых стержней, образующих треугольники.

Для фермы характерно приложение внешних сил в узлах.

Рис. 6.1

Бели элементы стержневой системы работают в основном на изгиб или кручение, то система называется рамой (рис. 6.2).

Рис. 6.2

Особую, наиболее простую для исследования группу стержневых систем составляют плоские системы. У плоской рамы или фермы оси всех составляющих элементов расположены в одной плоскости, которая одновременно является главной плоскостью сечений. В этой же плоскости действуют все внешние силы, включая и реакции опор (см. рис. 6 2, а).

Наряду с плоскими имеются так называемые плоскопространственные системы. Для такого рода систем оси составляющих элементов в недеформированном состоянии располагаются, как и для плоских систем, в одной плоскости. Внешние же силовые факторы действуют в плоскостях, перпендикулярных этой плоскости (см. рис. 6.2, 6). Стержневые системы, не относящиеся к двум указанным классам, называются пространственными (см. рис. 6.2, б).

Рамы и фермы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая система, для которой все реакции опор могут быть определены при помощи уравнений равновесия, а затем при найденных опорных реакциях методом сечений могут быть найдены также и внутренние силовые факторы в любом поперечном сечении. Под статически неопределимой системой имеется в виду такая, для которой определение

внешних реакций и всех внутренних силовых факторов не может быть произведено при помощи метода сечений и уравнений равновесия.

Разность между числом неизвестных (реакций опор и внутренних силовых факторов) и числом независимых уравнений статики, которые могут быть составлены для рассматриваемой системы, носит название степени, или числа статической неопределимости. В зависимости от этого числа системы разделяют на один, два, три, ..., n раз статически неопределимые. Иногда говорят, что степень статической неопределимости равна числу дополнительных связей, наложенных на систему. Остановимся на этом вопросе подробнее.

Положение жесткого тела в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий стержень обладает шестью степенями свободы. На него могут быть наложены связи, т. е. ограничения, обусловливающие его определенное положение в пространстве. Наиболее простыми связями являются такие, при которых полностью исключается то или иное обобщенное перемещение для некоторых сечений. Наложение одной связи снимает одну степень свободы. Следовательно, если на свободный жесткий стержень наложено шесть связей, то положение его в пространстве будет, за некоторыми исключениями, определено полностью, и система из механизма, обладающего шестью степенями свободы, превращается в кинематически неизменяемую систему. То число связей, при котором достигается кинематическая неизменяемость, носит название необходимого числа связей. Всякую связь, наложенную сверх необходимых, называют дополнительной. Число дополнительных связей равно степени статической неопределимости системы.

Связи в рамах и стержневых системах делят обычно на связи внешние и связи внутренние, или взаимные. Под внешними связями понимаются условия, накладываемые на абсолютные перемещения некоторых точек системы. Если, например, на левый конец бруса (рис. 6.3, а) наложено условие, запрещающее вертикальное перемещение, говорят, что в этой точке имеется одна внешняя связь. Условно ее изображают в виде двух шарниров или катка. Если запрещено как вертикальное,

так и горизонтальное смещение, говорят, что наложены две внешние связи (рис. 6.3, б). Заделка в плоской системе дает три внешние связи.

Рис. 6.3

Пространственная заделка соответствует шести внешним связям (рис. 6.3, в). Внешние связи часто, как уже упоминалось, делят на необходимые и дополнительные. Например, на рис. 6.4 показана плоская рама, имеющая в слуае а три , а в случае - пять внешних связей. Для того чтобы определить положение рамы в плоскости как жесткого целого необходимо наложение трех связей. Следовательно, в случае а рама имеет необходимые внешние связи, а случае кроме того, две дополнительные внешние связи.

Рис. 6.4

Под внутренними, или взаимными, связями понимаются ограничения, накладываемые на взаимные смещения элементов рамы. Здесь также можно говорить как о необходимых, так и о дополнительных связях. Например, плоская рама, показанная на рис. 6.5, а, имеет необходимое количество как внешних, так и внутренних связей между элементами.

Рис. 6.5

Это - кинематически неизменяемая система. Если будут заданы внешние силы, мы сможем при помощи уравнений статики найти как реакции опор, так и внутренние силовые факторы в любом поперечном сечении рамы. В той же раме, показанной на рис. кроме внешних наложены две дополнительные внутренние связи, запрещающие взаимное вертикальное и горизонтальное смещения точек А к В. Система в данном случае дважды статически неопределима (иногда добавляют: внутренним образом).

Рис. 6.6.

В раме, показанной на рис. 6.4, а и также имеются внутренние дополнительные связи. Контур рамы полностью замкнут. Разрезая его в любом сечении (рис. 6.6), мы, не нарушая кинематической неизменяемости, получаем возможность при заданных силах найти внутренние силовые факторы в каждом сечении рамы. Следовательно, разрезая замкнутую раму, мы снимаем дополнительные связи, т.е. позволяем сечениям А к В поворачиваться и смещаться в двух направлениях одно относительно другого. Обобщая, можно сказать, что замкнутый плоский контур имеет три дополнительные взаимные связи, т.е. трижды статически неопределим. Таким образом, рама, показанная на рис. 6.4, а, трижды статически неопределима, а рама, представленная на рис. пять раз статически неопределима (три раза внутренним образом и два раза - внешним).

Рассмотрим теперь несколько примеров определения степени статической неопределимости стержневых и рамных систем. На рис. показало несколько рам. Последовательно рассмотрим их.

а. Рама имеет четыре дополнительные внешние связи и три внутренние связи, т.е. семь раз статически неопределима.

б. Полагаем сначала, что шарнир А отсутствует. Тогда имеются две внешние и три внутренние дополнительные

Рис. 6.7

связи. Система без шарнира А была бы пять раз статически неопределимой.

Шарнир А принадлежит одновременно трем стержням. Его можно рассматривать как два совпавших шарнира (рис. 6.8). Так как каждый шарнир снимает одну связь, т.е. разрешает поворот одного сечения относительно другого, то можно сказать, что шарнир А снимает две связи. Система становится, таким образом, вместо пяти - три раза статически неопределимой.

Рис. 6.8

Обобщая сказанное, можно сделать вывод, что шарнир снимает число связей, на единицу меньшее числа сходящихся в нем стержней. В данном случае в шарнире А сходятся три стержня, и шарнир снимает две связи.

в. Если бы шарнир А отсутствовал, система была бы статически неопределимой четыре раза внешним образом и три раза внутренним образом, т.е. всего семь раз. Шарнир А снимает число связей, на единицу меньшее числа сходящихся в нем стержней, т.е. три связи. Рама четыре раза статически неопределима.

г. Рама три раза статически неопределима.

д. Внешние связи не удовлетворяют условиям кинематической неизменяемости. Это - механизм, точнее говоря, мгновенный механизм. Система имеет возможность поворачиваться относительно верхней опоры как жесткое целое. Понятно, что угол поворота будет небольшим. Нижняя связь заклинится и будет достигнуто какое-то положение равновесия, но новое положение связей будет зависеть от жесткости системы. К раме неприменимы основные принципы сопротивления материалов: принцип неизменности начальных размеров и принцип независимости действия сил.

е. Рама - пространственная. Имеется шесть дополнительных внешних связей (лишняя заделка) и шесть дополнительных взаимных связей (замкнутый контур). Система 12 раз статически неопределима.

ж. Система семь раз статически неопределима (один раз внешним образом и шесть раз - внутренним).

з. Здесь для плоской рамы не показаны внешние связи, но дана система внешних сил, удовлетворяющая условиям равновесия. В таком случае условились считать, что дополнительных внешних связей нет и положение рамы в пространстве определено, поэтому рассматривают только внутренние связи. Система три раза статически неопределима.

и. Здесь также рассматривают только внутренние связи, поскольку система внешних сил удовлетворяет условиям равновесия. Нужно подсчитать, сколько сечений необходимо сделать в раме, чтобы, с одной стороны, она не “рассыпалась”, а с другой - чтобы в ней не осталось ни одного замкнутого контура. Таких сечений следует сделать пять (см. рис. 6.7, и). Система 30 раз статически неопределима.

1
Оглавление
email@scask.ru