Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10.4. Определение напряжений и перемещений в круглых пластинах

Проследим на примерах последовательность применения выведенных формул.

Пример 10.5. Определить прогибы и напряжения в пластине, нагруженной равномерно распределенной нагрузкой в двух случаях закрепления пластины: а) при защемлении контура, б) при свободном опирании пластины на контуре (рис. 10.21). Радиус пластины , толщина

Рис. 10.21

Решение задачи начинаем с определения поперечной силы Для центральной части пластины радиусом (см. рис. 10.21), независимо от способа закрепления на внешнем контуре, уравнение равновесия дает

или

Из выражения (10.18) после двукратного интегрирования находим

Как в первом, так и во втором случае угол поворота в в центре пластины (при должен быть равен нулю. Но это возможно только при Таким образом,

Теперь рассмотрим случаи закрепления раздельно. В первом случае при угол откуда

Согласно выражениям (10.13), получаем

Далее, из выражения (10.8) находим

где - постоянная, определяемая из условия Тогда

Пластина, как видим, изгибается по поверхности четвертого порядка.

Во втором случае закрепления пластины радиальные напряжения (или момент на контуре обращаются в нуль. Следовательно, согласно первому выражению (10.13), при

Из этого условия определяем постоянную Уравнение (10.20) дает

откуда

Согласно выражениям (10.13), определяем изгибающие моменты:

Выражение для перемещения имеет вид

Постоянную снова подбираем из условия, чтобы на контуре перемещение и обращалось в нуль:

следовательно,

Согласно выражениям (10.21) (10.23), строим эпюры изгибающих моментов (рис. 10.22).

Рис. 10.22

В случае защемленного контура наибольшие растягивающие напряжения возникают у верхней поверхности вблизи контура. Согласно формулам (10.19),

а эквивалентное напряжение

В случае свободно опертого контура наибольшие растягивающие напряжения

возникают в центре у нижней поверхности пластины. Здесь

Наибольшие прогибы, согласно выражениям (10.22) и (10.24), в первом и втором случаях будут равны соответственно

Пример 10.6. Определить напряжения и прогибы в дисковой пружине, показанной на рис. 10.23, а.

Рис. 10.23

Задача, очевидно, сводится к расчетной схеме пластины, нагруженной по контурам распределенными силами интенсивности Р (рис. 10.23, б). Осадка пружины определяется прогибом одной пластины, увеличенным в раз, где - число пластин в пружине.

Определяем сначала поперечную силу Из условия равновесия центральной части пластины (рис. 10.23, в) имеем

Из уравнения (10.18) находим

Заменив постоянную на перепишем это выражение в следующем виде:

Постоянные подбираем условий, чтобы изгибающий радиальный момент

обращался в нуль при Это дает два уравнения:

откуда

Теперь подставив в выражения (10.13), получим

Эпюры моментов представлены на рис. 10.24. Наибольшее напряжение имеет место у внутреннего контура. Здесь

где

Рис. 10.24

Интегрируя уравнение (10.26), находим, согласно выражению (10.8),

Постоянную определяем из условия, чтобы при перемещение обращалось в нуль. Тогда

Полагая и подставляя находим прогиб одной пластины:

Для рассматриваемой пружины эту величину нужно увеличить в раз.

Пример 10.7. Определить прогиб и наибольшие напряжения в пластине, нагруженной сосредоточенной силой в центре (рис. 10.25).

Как и в предыдущем примере, Поэтому выражение (10.26) сохраняет свою силу. Перепишем его:

Рис. 10.25

В центре (при угол Следовательно, поскольку постоянная Постоянную подбираем так, чтобы функция обращалась в нуль при Это дает Таким образом,

Изгибающие моменты, согласно выражениям (10.13), будут равны

Эпюры, построенные по этим формулам, представлены на рис. 10.25. Как видим, в центре изгибающие моменты обращаются в бесконечность, что является следствием того, что здесь обращается в бесконечность поперечная сила . В центре, таким образом, имеет место, как говорят, неустранимая особенность. В реальных условиях сосредоточенных в точке

сил не существует - это лишь схема. Сила действует на небольшую площадку (рис. 10.26) в зависимости от размеров которой будут возникать большие или меньшие напряжения.

Прогиб в центре пластины при сосредоточенной силе имеет конечную величину, и схематизация реальных условий приложения сил не вносит здесь противоречий:

Рис. 10.26

Так как при прогиб

откуда

В центре

Пример 10.8. Построить эпюры изгибающих моментов для сплошной пластины, защемленной по контуру и нагруженной силой Р, распределенной по окружности радиусом а (рис. 10.27).

Пластину следует рассматривать как состоящую из двух участков. На первом участке , согласно выражению (10.8), получаем

причем сразу можно сказать, что поскольку в центре Таким образом,

На втором участке

Здесь, согласно выражению (10.26),

Рис. 10.27

Постоянные определяем из условий сопряжения участков. При имеем т.е. углы поворота и изгибающие моменты на контуре сопряжения участков должны быть одинаковыми.

Условие равенства моментов можно переписать в виде

Но так как

Третье условие будет, очевидно, следующим: при угол поворота Таким образом, получаем три уравнения:

из которых находим

На первом, центральном, участке пластины изгибающие моменты, согласно выражениям (10.13) и (10.27), равны:

На втором участке, учитывая выражение для 0] (10.28), получим

Эпюры изгибающих моментов показаны на рис. 10.27. Если радиус мал, то наибольший изгибающий момент возникает в центральной части пластины. При больших значениях а наибольший момент имеет место у ее контура. По моментам легко подсчитать и напряжения.

Таким образом, задача о расчете пластины, имеющей несколько участков, не содержит в себе принципиальных трудностей. Однако здесь приходится большей частью производить довольно громоздкие выкладки.

1
Оглавление
email@scask.ru