Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.5. О новых материалах

Естественно, что при поиске новых материалов исследователи обращают главное внимание на показатели прочности. Вернемся к § 1.8, где был приведен упрощенный расчет предельной, или идеальной прочности. Это прочность, определяемая силами молекулярного сцепления, свойственного данному материалу, когда все молекулярные связи воспринимают нагрузку в максимальной степени.

Предельная прочность, выраженная в напряжениях, как уже было выяснено, составляет, грубо говоря, одну десятую от модуля упругости (где больше, где меньше, в зависимости от характера химических связей и структурных особенностей материала).

В принципе о существовании предельной прочности материалов физикам было известно очень давно. Но только в 1920 г. инженер Гриффитс сделал попытку - причем успешную - практически приблизиться к предельной прочности. И в качестве модельного материала он избрал стекло.

Надо сказать, что стекло в домашнем обиходе своей необычайной хрупкостью уже настолько себя скомпрометировало, что только усилием воли можно заставить себя смотреть на него как на полезный конструкционный материал даже сейчас, когда мы знаем, как много высокопрочных конструкций создано на базе стекловолокна.

Стекло при испытании на растяжение покалывает обычно значение Но если вытягивать из него на горелке все более и более тонкие образцы, то обнаруживается характерная зависимость: по мере уменьшения диаметра образца временное сопротивление начинает возрастать; сначала незаметно, а затем, по мере дальнейшего утончения уже не прутка, а нити, все быстрее и быстрее. Так у Гриффитса и шдучилрсь. У нитей диаметром 2,5 мкм уже составило Это - если испытать нить сразу после изготовления. Если же повременить, то временное сопротивление снижается до Нити, более тонкие чем 2,5 мкм, Гриффитс изготовить не смог. В то время нельзя было бы точно определить и их диаметр. Но, экстраполируя зависимость временного сопротивления в область малых диаметров, Гриффитс пришел к выводу, что, судя по ходу кривой, есть надежда для очень тонких нитей получить около в то время как расчетная предельная прочность стекла составляет примерно

В основе хрупкого разрушения, как мы уже знаем, лежит соотношение между напряжением и размером трещины (см. выражение (8.12)). В крупных образцах статистически преобладают соответственно и более крупные трещины; в тонких нитях им попросту нет места. Появись там такая трещина, и не существует нити. Даже просто выбирая из множества образцов более тонкую нить, мы тем самым вместе с исключаемыми более крупными образцами исключаем и более крупные трещины, и этой непреднамеренной селекцией обеспечиваем более тонким нитям более высокую прочность.

Хочется добавить, что употребленное выше слово “выбирая” не следует понимать как “перебирая” и, тем более, “перекладывая”. Надо иметь в виду, что даже лишь прикасаясь пальцами к заготовленной нити, мы можем резко снизить ее прочность. Невидимая острая пылинка минерального происхождения, застрявшая в кожном покрове, способна нанести ей роковые поверхностные повреждения. С помощью электронного микроскопа уже фотографировали ветвистые царапины такого рода и возможность их возникновения не подвергается сомнениям.

Есть еще одна причина образования микротрещин в стеклянных нитях. Стекло не имеет кристаллической структуры, но некоторую склонность кристаллизоваться в твердом состоянии все же сохраняет. И порой эта склонность может себя нет-нет да и проявить. Начало же всякой кристаллизации связано с местным изменением объема. Возникает микротрещина, что и проявляется в том, что выдержка нити снижает ее прочность так же, как и неизбежное соприкосновение с соседними нитями или с окружающими предметами.

За последние десятилетия было выполнено много работ в попытках приблизиться к предельной прочности; и не только со стеклом, но и со многими другими материалами, в том числе и с металлами. Вытягивали из расплава нити, выращивали идеальные нитевидные кристаллы, были созданы приборы для испытания на прочность микрообразцов длиной менее миллиметра. Возможность приближения к предельной прочности подтверждалась, волновала и вселяла радужные надежды. Но по мере накопления знаний, как всегда, начинали брать верх реалистические соображения.

Наверное, нам нужна не только прочность, но и надежность, которая находит свое выражение в достаточной вязкости материала, а может, и еще в каких-то пока не названных качествах.

И еще один вопрос. Если предельная прочность для основных конструкционных материалов количественно составляет примерно десятую часть модуля упругости, то это значит, что в эксплуатационных условиях все конструкционные материалы будут иметь деформации, приближающиеся к 10 %. Как видим, повышая максимально прочность, мы весьма заметно теряем в жесткости. Сможет ли, например, легкий и весьма прочный коленчатый вал двигателя нормально работать, если возникающие в нем деформации измеряются несколькими процентами.

Таким образом, для практических целей важна не только предельная прочность. Есть еще ряд механических характеристик, как самостоятельных, так и связанных с прочностью. И их необходимо принимать во внимание.

Сейчас в практику машиностроения внедрено много высококачественных и прочных металлов и металлических сплавов. Но все металлы без исключения обладают одной характерной и вместе с тем неприятной особенностью. С повышением прочности их вязкость, как правило, падает. Оно и понятно. Упрочняя материал путем легирующих добавок или термообработкой, мы в той или иной мере ограничиваем дислокационные перемещения, а они то как раз и придают материалу вязкость, способствуют рассеянию энергии на фронте трещины. Значит, следует попытаться найти или искусственно создать еще какие-то формы рассеяния энергии, препятствующие распространению трещин.

Находкой нашего века явилось создание микронеоднородных структур - композитов, где развитию трещин поставлен заслон в виде высокопрочных волокон. Матрица прочно связана с нитями, и развивающаяся трещина не может их обойти и не может продвинуться дальше, не разрушив их. Это все равно, что попробовать расколоть полено, предварительно вбив в него поперек хотя бы несколько гвоздей. Таким образом, обнаруживается путь повышения вязкости при высокой прочности. Но значение композитов не только в этом.

Чрезвычайно важно, что композиты заставили по-новому осмыслить наше отношение ко многим материалам, казавшимся прежде ни к чему не пригодными из-за своей хрупкости. И наглядным примером тому является, прежде всего, то же самое стекло, о котором мы только что говорили. Следом за стеклом пошли в дело и высокопрочные, но чрезвычайно хрупкие минералы, лежащие буквально у нас под ногами. Конечно, с ними необходимо было поработать.

Чтобы представить потенциальные возможности различных веществ, составляющих композиционные структуры, нет необходимости вчитываться в подробнейшие справочные таблицы, где приводится множество механических характеристик. Достаточно выделить главные. А главным в данном случае для каждого вещества является его модуль упругости. От него зависит и жесткость, и предельная прочность. Необходимы еще такие характеристики, как температура плавления и плотность. В то же время нет нужды особо фиксировать

свое внимание на реальном пределе прочности. Он изменяется в широких пределах в зависимости от фазового состава и методов технологической обработки.

В табл. 8.1 приведены перечисленные характеристики для трех групп конструкционных материалов. Первые две - металлы и полимеры. Третью группу образуют неорганические и неметаллические вещества, для обобщения часто называемые керамикой. С последней их роднит минеральное происхождение и высокая температура обработки. В последнем столбце таблицы приведена относительная жесткость, т. е. отношение модуля упругости к плотности вещест наглядности удельная жесткость каждого вещества отнесена к удельной жесткости железа.

Относительная жесткость металлов, как видим, изменяется в достаточно узком интервале. Исключение составляет ниобий. Он имеет очень низкую удельную жесткость. В обратную сторону резко выделяется бериллий, и к нему в последнее время приковано серьезное внимание в авиационной и ракетно-космической технике. Есть надежда, что прочность нитей бериллия можно будет поднять переводом в аморфное состояние. И все было бы хорошо, но беда заключается в токсичности бериллия, и это заставляет принимать специальные меры безопасности в цехах по его обработки. Пока неизвестно, что возьмет верх - преимущества или недостатки.

Полимеры делят на две подгруппы: аморфные - эпоксидные смолы и оргстекло, и не столь широко известные кристаллические полимеры. Первые используются в качестве связующего. Кристаллические же полимеры имеют высокую удельную жесткость и прочность, что позволяет создавать на их основе специальное органоволокно.

И, наконец, третью группу образуют неорганические и неметаллические вещества. Высокая удельная жесткость, жаростойкость, неокисляемость оксидов (им больше некуда окисляться), твердость и дешевизна дают право надеяться на широкое применение этих материалов. Громкие названия “сапфир”, “гранат” не должны тревожить наше воображение. Это - очень распространенные на Земле минералы, недефицитные

(кликните для просмотра скана)

и дешевые. Что же касается бороволокна и углеволокна, то они уже давно внедрены в практику.

Теперь естественным будет вопрос, какие же пары (или тройки) перечисленных веществ следует объединять в композиты. Вопрос резонный, а главное, естественно вытекающий из исторически сложившихся представлений о производственном процессе. Но ответить на него непросто.

Композит - это не совсем материал. Это - часть конструкции, выполняющая функции материала и отвечающая на вопрос: “Из чего сделано?” Композит заставляет пересмотреть наше отношение не только к веществам, но и к производственному процессу в целом.

Из названных в табл. 8.1 веществ не представляет особого труда изготовить множество самых разнообразных образцов композитов - прутков, плоских монослоев или трубок. Можно, например, сделать образец молибдена с сапфировыми нитями, хотя молибден и более тугоплавок, чем сапфир. Такие образцы можно испытывать, определять их модули упругости и предел прочности. Существует специальная литература по вопросам испытания композитных образцов, по приближенным и уточненным способам расчетного определения прочности и жесткости композитов по характеристикам составляющих.

Но в том-то и дело, что создать образцы композита и изготовить из композита деталь машины - далеко не одно и то же. Композит нельзя изготовить заранее. Его готовят вместе с деталью и, создавая его, образуют деталь. Поэтому на вопрос, какие же комбинации из упомянутых веществ следует предпочесть, ответ может быть только один: такие, которые позволяют изготовить эту деталь и к тому же могут обеспечить ее высокое качество. Вопрос слишком общий, чтобы можно было дать на него определенный ответ. Все зависит от способа изготовления (если он существует), особенностей детали, условий производства.

Композиты открывают перед инженером окно в новый мир, где нельзя быть только материаловедом или только механиком. Для композитов нужен широкий кругозор механика, материаловеда, физика и технолога.

1
Оглавление
email@scask.ru