Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8.5. О новых материалахЕстественно, что при поиске новых материалов исследователи обращают главное внимание на показатели прочности. Вернемся к § 1.8, где был приведен упрощенный расчет предельной, или идеальной прочности. Это прочность, определяемая силами молекулярного сцепления, свойственного данному материалу, когда все молекулярные связи воспринимают нагрузку в максимальной степени. Предельная прочность, выраженная в напряжениях, как уже было выяснено, составляет, грубо говоря, одну десятую от модуля упругости (где больше, где меньше, в зависимости от характера химических связей и структурных особенностей материала). В принципе о существовании предельной прочности материалов физикам было известно очень давно. Но только в 1920 г. инженер Гриффитс сделал попытку - причем успешную - практически приблизиться к предельной прочности. И в качестве модельного материала он избрал стекло. Надо сказать, что стекло в домашнем обиходе своей необычайной хрупкостью уже настолько себя скомпрометировало, что только усилием воли можно заставить себя смотреть на него как на полезный конструкционный материал даже сейчас, когда мы знаем, как много высокопрочных конструкций создано на базе стекловолокна. Стекло при испытании на растяжение покалывает обычно значение В основе хрупкого разрушения, как мы уже знаем, лежит соотношение между напряжением и размером трещины (см. выражение (8.12)). В крупных образцах статистически преобладают соответственно и более крупные трещины; в тонких нитях им попросту нет места. Появись там такая трещина, и не существует нити. Даже просто выбирая из множества образцов более тонкую нить, мы тем самым вместе с исключаемыми более крупными образцами исключаем и более крупные трещины, и этой непреднамеренной селекцией обеспечиваем более тонким нитям более высокую прочность. Хочется добавить, что употребленное выше слово “выбирая” не следует понимать как “перебирая” и, тем более, “перекладывая”. Надо иметь в виду, что даже лишь прикасаясь пальцами к заготовленной нити, мы можем резко снизить ее прочность. Невидимая острая пылинка минерального происхождения, застрявшая в кожном покрове, способна нанести ей роковые поверхностные повреждения. С помощью электронного микроскопа уже фотографировали ветвистые царапины такого рода и возможность их возникновения не подвергается сомнениям. Есть еще одна причина образования микротрещин в стеклянных нитях. Стекло не имеет кристаллической структуры, но некоторую склонность кристаллизоваться в твердом состоянии все же сохраняет. И порой эта склонность может себя нет-нет да и проявить. Начало же всякой кристаллизации связано с местным изменением объема. Возникает микротрещина, что и проявляется в том, что выдержка нити снижает ее прочность так же, как и неизбежное соприкосновение с соседними нитями или с окружающими предметами. За последние десятилетия было выполнено много работ в попытках приблизиться к предельной прочности; и не только со стеклом, но и со многими другими материалами, в том числе и с металлами. Вытягивали из расплава нити, выращивали идеальные нитевидные кристаллы, были созданы приборы для испытания на прочность микрообразцов длиной менее миллиметра. Возможность приближения к предельной прочности подтверждалась, волновала и вселяла радужные надежды. Но по мере накопления знаний, как всегда, начинали брать верх реалистические соображения. Наверное, нам нужна не только прочность, но и надежность, которая находит свое выражение в достаточной вязкости материала, а может, и еще в каких-то пока не названных качествах. И еще один вопрос. Если предельная прочность для основных конструкционных материалов количественно составляет примерно десятую часть модуля упругости, то это значит, что в эксплуатационных условиях все конструкционные материалы будут иметь деформации, приближающиеся к 10 %. Как видим, повышая максимально прочность, мы весьма заметно теряем в жесткости. Сможет ли, например, легкий и весьма прочный коленчатый вал двигателя нормально работать, если возникающие в нем деформации измеряются несколькими процентами. Таким образом, для практических целей важна не только предельная прочность. Есть еще ряд механических характеристик, как самостоятельных, так и связанных с прочностью. И их необходимо принимать во внимание. Сейчас в практику машиностроения внедрено много высококачественных и прочных металлов и металлических сплавов. Но все металлы без исключения обладают одной характерной и вместе с тем неприятной особенностью. С повышением прочности их вязкость, как правило, падает. Оно и понятно. Упрочняя материал путем легирующих добавок или термообработкой, мы в той или иной мере ограничиваем дислокационные перемещения, а они то как раз и придают материалу вязкость, способствуют рассеянию энергии на фронте трещины. Значит, следует попытаться найти или искусственно создать еще какие-то формы рассеяния энергии, препятствующие распространению трещин. Находкой нашего века явилось создание микронеоднородных структур - композитов, где развитию трещин поставлен заслон в виде высокопрочных волокон. Матрица прочно связана с нитями, и развивающаяся трещина не может их обойти и не может продвинуться дальше, не разрушив их. Это все равно, что попробовать расколоть полено, предварительно вбив в него поперек хотя бы несколько гвоздей. Таким образом, обнаруживается путь повышения вязкости при высокой прочности. Но значение композитов не только в этом. Чрезвычайно важно, что композиты заставили по-новому осмыслить наше отношение ко многим материалам, казавшимся прежде ни к чему не пригодными из-за своей хрупкости. И наглядным примером тому является, прежде всего, то же самое стекло, о котором мы только что говорили. Следом за стеклом пошли в дело и высокопрочные, но чрезвычайно хрупкие минералы, лежащие буквально у нас под ногами. Конечно, с ними необходимо было поработать. Чтобы представить потенциальные возможности различных веществ, составляющих композиционные структуры, нет необходимости вчитываться в подробнейшие справочные таблицы, где приводится множество механических характеристик. Достаточно выделить главные. А главным в данном случае для каждого вещества является его модуль упругости. От него зависит и жесткость, и предельная прочность. Необходимы еще такие характеристики, как температура плавления и плотность. В то же время нет нужды особо фиксировать свое внимание на реальном пределе прочности. Он изменяется в широких пределах в зависимости от фазового состава и методов технологической обработки. В табл. 8.1 приведены перечисленные характеристики для трех групп конструкционных материалов. Первые две - металлы и полимеры. Третью группу образуют неорганические и неметаллические вещества, для обобщения часто называемые керамикой. С последней их роднит минеральное происхождение и высокая температура обработки. В последнем столбце таблицы приведена относительная жесткость, т. е. отношение модуля упругости к плотности вещест Относительная жесткость металлов, как видим, изменяется в достаточно узком интервале. Исключение составляет ниобий. Он имеет очень низкую удельную жесткость. В обратную сторону резко выделяется бериллий, и к нему в последнее время приковано серьезное внимание в авиационной и ракетно-космической технике. Есть надежда, что прочность нитей бериллия можно будет поднять переводом в аморфное состояние. И все было бы хорошо, но беда заключается в токсичности бериллия, и это заставляет принимать специальные меры безопасности в цехах по его обработки. Пока неизвестно, что возьмет верх - преимущества или недостатки. Полимеры делят на две подгруппы: аморфные - эпоксидные смолы и оргстекло, и не столь широко известные кристаллические полимеры. Первые используются в качестве связующего. Кристаллические же полимеры имеют высокую удельную жесткость и прочность, что позволяет создавать на их основе специальное органоволокно. И, наконец, третью группу образуют неорганические и неметаллические вещества. Высокая удельная жесткость, жаростойкость, неокисляемость оксидов (им больше некуда окисляться), твердость и дешевизна дают право надеяться на широкое применение этих материалов. Громкие названия “сапфир”, “гранат” не должны тревожить наше воображение. Это - очень распространенные на Земле минералы, недефицитные (кликните для просмотра скана) и дешевые. Что же касается бороволокна и углеволокна, то они уже давно внедрены в практику. Теперь естественным будет вопрос, какие же пары (или тройки) перечисленных веществ следует объединять в композиты. Вопрос резонный, а главное, естественно вытекающий из исторически сложившихся представлений о производственном процессе. Но ответить на него непросто. Композит - это не совсем материал. Это - часть конструкции, выполняющая функции материала и отвечающая на вопрос: “Из чего сделано?” Композит заставляет пересмотреть наше отношение не только к веществам, но и к производственному процессу в целом. Из названных в табл. 8.1 веществ не представляет особого труда изготовить множество самых разнообразных образцов композитов - прутков, плоских монослоев или трубок. Можно, например, сделать образец молибдена с сапфировыми нитями, хотя молибден и более тугоплавок, чем сапфир. Такие образцы можно испытывать, определять их модули упругости и предел прочности. Существует специальная литература по вопросам испытания композитных образцов, по приближенным и уточненным способам расчетного определения прочности и жесткости композитов по характеристикам составляющих. Но в том-то и дело, что создать образцы композита и изготовить из композита деталь машины - далеко не одно и то же. Композит нельзя изготовить заранее. Его готовят вместе с деталью и, создавая его, образуют деталь. Поэтому на вопрос, какие же комбинации из упомянутых веществ следует предпочесть, ответ может быть только один: такие, которые позволяют изготовить эту деталь и к тому же могут обеспечить ее высокое качество. Вопрос слишком общий, чтобы можно было дать на него определенный ответ. Все зависит от способа изготовления (если он существует), особенностей детали, условий производства. Композиты открывают перед инженером окно в новый мир, где нельзя быть только материаловедом или только механиком. Для композитов нужен широкий кругозор механика, материаловеда, физика и технолога.
|
1 |
Оглавление
|