Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.8. Анизотропия

Все сказанное по поводу обобщенного закона Гука и вытекающих из него следствий относилось к изотропным средам. Теперь остановимся на упругих свойствах анизотропных материалов.

До недавнего времени в практических задачах инженерной механики эти вопросы на передний край не выдвигались. Это не значит, что анизотропные материалы не находили применения. С ними давно приходится иметь дело. Вспомним хотя бы резинокордную конструкцию автомобильных и авиационных шин, где резиновая оболочка армирована стальными или нейлоновыми нитями, образующими косоугольную сетку. Можно вспомнить и фанерные анизотропные панели, применявшиеся в прошлом для оклейки несущих плоскостей самолетов. Можно привести и другие примеры, где анизотропия фигурирует

как важный фактор расчетной схемы. И все же, несмотря на несомненную важность и даже заслуженность подобных прикладных задач, следует признать, что все они узконаправленны и по своей общности существенно уступают тому богатству структурных схем, которое раскрывается перед нами в связи с применением композиционных материалов. Сейчас немыслимо представить авиационную и ракетно-космическую технику без применения композитов. Композиционные материалы уже охватили многие отрасли промышленности, в том числе производство предметов домашнего обихода.

Композиционные материалы могут иметь различную структуру. Но во всех случаях, по самому определению, композит состоит по крайней мере из двух компонентов - наполнителя и связующего. Последнее обычно называют матрицей. Если наполнитель представляет собой уложенную в определенном порядке систему нитей или нитевидных кристаллов, композиционный материал приобретает резко выраженные свойства анизотропии, и модули упругости в различных направлениях могут различаться в несколько крат.

Не касаясь пока вопросов прочности, постараемся представить армированную структуру композита как сплошную и однородную среду с соответствующими упругими константами, позволяющими построить закон Гука в традиционной форме линейных зависимостей между компонентами напряженного и деформированного состояний. И обобщение в этом случае достаточно очевидно: каждая компонента деформированного состояния зависит от каждой из компонент напряженного состояния. В итоге получаем следующие соотношения:

где - коэффициенты податливости, которые определяются свойствами материала, но не являются его константами, поскольку зависят еще и от ориентации выбранной системы осей х, у, z.

Как напряженное и деформированное состояния являются тензорами, так и система коэффициентов податливости образует тензор, но более высокого порядка (ранга). Исследовать его свойства мы не будем, но отметим только, что этот тензор симметричный, т.е. Это вытекает из теоремы взаимности работ (см. § 5.6). Работа, например, силы на перемещении вызванном силой равна работе силы на перемещении

откуда следует, что

Рис. 7.32

Если являются главными осями напряженного состояния, то

При этом угловые деформации в нуль не обращаются. Следовательно, в анизотропной среде главные оси напряженного и деформированного состояний, вообще говоря, не совпадают. Это иллюстрирует простой пример, показанный на рис. 7.32. Деревянный образец вырезан под углом к направлению волокон. При растяжении вдоль оси х образец получит не только удлинение, но и перекос. В данном случае касательные напряжения равны нулю и, следовательно, оси х и у - главные оси напряженного состояния. Деформация же в нуль не обращается. Следовательно, для деформированного состояния оси х и у - не главные. Если бы образец был вырезан вдоль волокон, то при его растяжении по оси х никаких перекосов не возникало бы, и главные оси напряженного и деформированного состояний совпадали бы. А это означает, что некоторые из коэффициентов податливости при таком выборе осей обращаются в нуль. Значит, при определении коэффициентов

податливости в целях простоты следует сообразовываться с осями анизотропии среды.

Наиболее простой вид матрица податливости приобретает, естественно, в случае полной изотропии (см. (7.20) и (7.21)):

Несколько сложнее выглядит матрица податливости в случае монотропии, или, как ее часто называют, трансверсальной изотропии, которая свойственна композитам с однонаправленной укладкой нитевидного наполнителя (рис. 7.33).

Рис. 7.33

Обратимся к первому выражению (7.21) и, сохраняя обозначения для модуля и коэффициента Пуассона, снабдим их соответствующими индексами. Пусть по оси х модуль будет а по равноправным осям у и Тогда

Обозначение коэффициента Пуассона снабжено двумя индексами. Первый соответствует оси, по которой приложено напряжение, а второй - той оси, по которой происходит сужение. Для монотропной среды, естественно, Написав аналогичные выражения и для остальных компонент деформированного состояния, получаем матрицу податливости монотропного материала в следующем виде:

Здесь по свойству симметрии а кроме того, поскольку в плоскости среда изотропна, для нее сохраняется хорошо известное соотношение Таким образом упругие свойства монотропной среды определяются пятью независимыми константами.

И, наконец, еще один вид анизотропии, характерный для композитов - ортпотропия, обладающая симметрией относительно трех взаимно перпендикулярных плоскостей (рис. 7.34). Здесь, в отличие от монотропии, оси у и z неравноправны. В частности, ортотропной является древесина. Упругие свойства ортотропной среды описываются девятью независимыми постоянными:

Рис. 7.34

Рис. 7.35

где, конечно, по свойству симметрии

Упругие постоянные Для композита можно определять не только путем испытания образцов. Если известны модули нитей и связующего, можно с достаточной точностью рассчитать упругие постоянные создаваемого композита. В частности, особенно просто определить модуль упругости для монотропного композита (рис. 7.35). Достаточно очевидно,

что в случае длинных нитей

где - модули упругости нитей и связующего; и - соответственно их объемные доли в композите. Если наполнитель состоит из коротких нитевидных кристаллов, формула дает завышенные значения Возникает также погрешность вследствие различия коэффициентов Пуассона для нитей и матрицы, но она незначительна. Формулы для определения других упругих констант композита существенно сложнее только что приведенной, но не настолько, чтобы это серьезно затрудняло вычисления.

В практике расчетов и упругих констант, и предела прочности композита широко используют понятие монослоя - как основного составляющего элемента слоистых структур. Монослой - это скорее двойной слой (см. рис. 7.35), содержащий два семейства нитей, направленных соответственно под углами или 0°, 90° к оси х.

Если получается однонаправленный монослой. Значения модулей упругости и пределов прочности такого монослоя даны в табл. 7.1. Приведенные данные заметно изменяются в зависимости от рецептуры связующего и от методов изготовления композита.

Таблица 7.1. Механические свойства однонаправленных композитов с эпоксидной матрицей

Окончание табл. 7.1. (см. скан)

В табл. 7.2 даны значения модулей упругости и пределов прочности перекрестно армированных композитов.

Таблица 7.2. (см. скан) Механические свойства ортогонально армированных и перекрестно армированных композитов

1
Оглавление
email@scask.ru