Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8.2. Гипотезы (критерии) появления пластических деформацийИтак, основной вопрос при формулировке критерия пластичности заключается в том, какая из компонент напряженного состояния (или какая их комбинация) в общем случае определяет переход материала к пластическому состоянию. Из множества предлагавшихся в свое время гипотез пластичности лишь две сохранили к настоящему времени свое значение. Первая гипотеза связана с именами Треска и Сен-Венана. Она основана на достаточно очевидной предпосылке: пластическая деформация в металлах возникает в результате необратимых сдвигов в кристаллической решетке. Понятно, что переход к пластическому состоянию не происходит внезапно. Сначала пластическая деформация возникает в отдельных, неблагоприятно ориентированных зернах. Возрастание нагрузки вовлекает в пластическую деформацию новые микрообласти, и, когда пластической деформацией охватывается подавляющее множество зерен, мы можем говорить о том, что произошел переход к пластическому состоянию. Естественно предположить, что мерой этого перехода является наибольшее касательное напряжение в объеме, охватывающем достаточно большое число произвольно ориентированных зерен, т. е. то самое касательное напряжение, которое мы определяли на основе предпосылки сплошной изотропной среды. Максимальное касательное напряжение возникает на площадках, равнонаклоненных к площадкам наибольшего и наименьшего главных напряжений, и равно полуразности этих напряжений (см. выражение (7.14)):
Таким образом, если Экспериментальная проверка этой гипотезы показала, что для пластичных материалов она приводит, в общем, к удовлетворительным результатам. Переход от упругого состояния к пластическому действительно с достаточной точностью определяется разностью между наибольшим и наименьшим из главных напряжений и слабо зависит от промежуточного главного напряжения Придерживаясь сформулированного критерия пластичности, мы можем принять, что два напряженных состояния равноопасны в том случае, если имеет место равенство наибольших касательных напряжений. Для напряженных состояний А и В (см. рис. 8.1) имеем
откуда
Это и есть то расчетное напряжение, которое по критерию максимальных касательных напряжений должно быть сопоставлено с пределом текучести при растяжении. Казалось бы, что простота расчетных зависимостей, физическая наглядность критерия и, наконец, соответствие с экспериментом должны были бы обеспечить гипотезе максимальных касательных напряжений полную монополию если не в теоретическом аспекте, то по крайней мере при решении практических задач. Этого, однако, не произошло, и в своеобразном естественном отборе, который происходил среди многих гипотез, предлагавшихся в конце прошлого и начале настоящего века, выжила и заняла место наравне с теорией Треска - Сен-Венана также и гипотеза Хубера - Мизеса. Она была сформулирована Хубером в 1904 г. в виде исправленного варианта критерия Бельтрами, согласно которому переход к пластическому состоянию связан с уровнем накопленной в единице объема потенциальной энергии деформации. Но принять в качестве критерия пластичности всю энергию деформации нельзя. Это противоречило бы экспериментально установленному факту, что при всестороннем давлении пластические деформации не возникают, в то время как потенциальная энергия неограниченно возрастает. В связи с этим Хубером было предложено исключить из рассмотрения энергию объема, а в качестве критерия перехода из упругого состояния в пластическое принять энергию формоизменения (7.28). Для простого растяжения это выражение приобретает вид
Из условия равноопасности определяем егэкв. Для этого приравниваем два последних выражения и получаем
Но энергия формоизменения, как мы уже знаем, пропорциональна квадрату октаэдрического касательного напряжения (см. § 7.7). Поэтому то же самое выражение (8.2) для аэкв можно получить, если в качестве критерия пластичности принять не энергию формоизменения, а касательное напряжение в октаэдрических площадках. Действительно,
Для простого растяжения
Приравнивая выражения Почему же гипотеза Хубера - Мизеса, приводящая к более сложному для Оказывается, дело не только в том, что, по мнению многих авторитетов, она для основных конструкционных металлов более точно отражает условия перехода в пластическое состояние. В процентном отношении разница между выражениями (8.1) и (8.2) не столь уж и заметна. Она достигает максимума при чистом сдвиге согда Любопытно, что именно это обстоятельство заставило Мизеса, не знакомого с работой Хубера, в 1913 г. в целях упрощения предпринять поиск аналитического выражения, близкого к тому, что дает теория максимальных касательных напряжений, но не зависящего от перестановки индексов, что в дальнейшем позволило с большим успехом использовать это выражение при построении основ теории пластичности (см. гл. 11). Итак, мы рассмотрели два основных критерия пластичности, базирующихся на правдоподобных гипотезах и согласующихся с опытом. Но к рассматриваемому вопросу можно подойти и с несколько иных позиций - с позиций упрощенной систематизации экспериментальных данных. Этот подход впервые был сформулирован Мором и в настоящее время носит название теории Мора.
|
1 |
Оглавление
|