4.12е. Эрмитовы сигналы
Класс сигналов, которые инвариантны по отношению к повороту плоскости неопределенности (см. разд. 4.5, свойство VI), задается соотношением [5, 10]
где
есть полином Эрмита
порядка. Полиномы Эрмита определяются по формуле
где
Эти сигналы обладают свойством самотрансформируемости, т. е. они переходят сами в себя при преобразовании Фурье
Как легко показать, функция неопределенности для этих сигналов имеет вид
где
- полином Лаггера
порядка. Полиномы Лаггера определяются формулами [17]
Примеры таких сигналов приведены Клаудером [10], который приводит и функцию неопределенности для нескольких порядков
показанных на рис. 4.18 и 4.19. Боковые лепестки этих функций неопределенности спадают приближенно по закону
тогда как боковые лепестки ЛЧМ сигналов спадают по закону

(кликните для просмотра скана)

(кликните для просмотра скана)