Главная > Спектральный анализ и его приложения. Выпуск 2
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Глава 8. ВЗАИМНАЯ КОРРЕЛЯЦИОННАЯ ФУНКЦИЯ И ВЗАИМНЫЙ СПЕКТР

В этой главе понятия, введенные в гл. 5 и 6 (вып. 1), распространяются на случай пары временных рядов и случайных процессов. Первым таким обобщением, приведенным в разд. 8.1, является взаимная корреляционная функция двумерного стационарного случайного процесса. Эта функция характеризует корреляцию двух процессов при различных запаздываниях. Второе обобщение представляет собой двумерный линейный процесс, образуемый с помощью линейных операций над двумя источниками белого шума. Важными частными случаями такого процесса являются двумерный процесс авторегрессии и двумерный процесс скользящего среднего.

В разд. 8.2 мы обсудим вопрос об оценивании взаимной корреляционной функции. Мы покажем, что если не применять к обоим рядам фильтрации, переводящей их в белый шум, то при оценивании могут возникать ложные завышенные значения взаимной корреляции. В разд. 8.3 вводится третье обобщение — взаимный спектр стационарного двумерного процесса. Взаимный спектр содержит два различных вида информации, характеризующей зависимость между двумя процессами. Информация первого типа содержится в спектре когерентности, являющемся эффективной мерой корреляции двух процессов на каждой из частот. Информация второго типа дается фазовым спектром, характеризующим разность фаз двух процессов на каждой из частот. В разд. 8.4 оба эти типа информации иллюстрируются на простых примерах.

8.1. ФУНКЦИЯ ВЗАИМНОЙ КОРРЕЛЯЦИИ

8.1.1. Введение

В этой главе мы будем заниматься вопросами описания пары временных рядов, или двумерного временного ряда. Используемые при этом способы являются обобщением способов, применявшихся в гл. 5, 6, и поэтому все относящиеся к временным рядам общие положения, изложенные в разд. 5.1, применимы и в этом случае. В разд. 5.1 под заголовком «Многомерные временные

ряды» кратко упоминалось о том, что отдельные временные ряды, образующие многомерный ряд, могут быть неравноправны по отношению друг к другу. Рассмотрим, например, систему, показанную на рис. 8.1, которая имеет два входа и два выхода

Рис. 8.1. Физическая система с двумя входами и двумя выходами.

Можно различать две ситуации. В первом случае два ряда находятся в одинаковом положении по отношению друг к другу, как, например, два входа на рис. 8.1.

Рис. 8.2. Синфазный и сдвинутый по фазе токи на выходе турбогенератора.

В этом случае могут быть двумя коррелированными переменными управления, взаимодействие которых мы хотим изучить. Пример пары временных рядов, попадающих в эту категорию, приведен на рис. 8.2,

где приведены записи синфазного и сдвинутого по фазе входных токов турбогенератора.

Во втором случае два временных ряда причинно связаны, например вход на рис. 8.1 и зависящий от него выход . В такой ситуации обычно требуется оценить свойства системы в такой форме, чтобы было удобно предсказывать выход по входу. Пример пары временных рядов такого типа приведен на рис. 8.3, где показана скорость впуска газа и концентрация двуокиси углерода на выходе газовой печи.

Рис. 8.3. Сигналы на входе и выходе газовой печи.

Видно, что выход запаздывает по отношению ко входу из-за того, что для доставки газа к реактору требуется некоторое время.

В первой ситуации обычно интересуются описанием взаимодействия, или корреляции, между двумя рядами, так чтобы это взаимодействие можно было подвергнуть любому дальнейшему исследованию. Например, если мы хотим управлять значениями выхода с помощью двух коррелированных управляющих переменных и хотим получить определенный результат на выходе, то нужно изучить эту взаимную корреляцию входных процессов. С другой стороны, во второй ситуации обычно интересуются соотношениями между такими, например, как

так что легко предсказать по (этот вопрос кратко обсуждался в разд. 5.1.5). Эта и следующая за ней главы посвящены рядам, находящимся в одинаковом положении по отношению друг к другу. Причинно связанные ряды обсуждаются в гл. 10.

Categories

1
Оглавление
email@scask.ru