Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. МЕТОД СТАТИСТИЧЕСКОЙ ЛИНЕАРИЗАЦИИСтатистическое исследование нелинейных систем представляет собой весьма сложную задачу. Сравнительная простота методов статистического анализа линейных систем является естественной причиной попыток распространить эти методы на задачи приближенного исследования точности нелинейных систем. Так возникли методы линеаризации нелинейных характеристик систем. Простейшим видом линеаризации нелинейных систем является линеаризация при помощи разложения всех нелинейных функций, входящих в уравнения системы, в ряд Тейлора и отбрасывание всех членов ряда выше первой степени. При этом каждая входящая в уравнение системы нелинейная функция
где Формула вида (XVII.1) позволяет лйнеаризовать уравнения нелинейной системы относительно флюктуаций сигналов в различных элементах системы. Это дает возможность применять для приближенного исследования точности нелинейных систем методы статистической теории линейных систем. Однако формулы вида (XVII. 1) применимы только к непрерывным функциям, имеющим непрерывные производные по аргументу в области его практически возможных значений. Между тем системы автоматического регулирования часто содержат существенно нелинейные звенья, характеристики которых разрывны или имеют разрывные производные. К таким характеристикам можно отнести релейные характеристики, ограниченные зоны линейности и т. д. (см. кн. 1 гл. IV). Для линеаризации таких характеристик был развит метод статистической линеаризации [5], [19]. Статистическая линеаризация представляет собой замену нелинейного звена линейным относительно флюктуаций звеном с сохранением в определенном смысле уровня полезного сигнала и уровня флюктуаций на выходе. При этом нелинейная функция аппроксимируется постоянным эквивалентным линейным коэффициентом усиления. Естественно, что аппроксимация нелинейных функций постоянным коэффициентом недостаточно полно отражает физическую картину преобразования случайного сигнала, так как не учитывается преобразование спектра сигнала нелинейным звеном. В связи с этим в работе [12] была предложена аппроксимация безынерционных нелинейных звеньев статистически эквивалентной передаточной функцией, определяемой из отношения спектральной плотности сигнала на выходе нелинейного звена к спектральной плотности сигнала на входе. Одновременно с этим была развита статистическая линеаризация нелинейных функций [8] при условии, когда входной сигнал содержит периодическую составляющую. Этот метод в дальнейшем получил название совместной статистической и гармонической линеаризации. Названные методы линеаризации позволяют свести систему нелинейных дифференциальных уравнений к системе линейных, эквивалентных исходной по первым двум моментам случайной функции. Следовательно, используя метод статистической линеаризации, можно определить лишь среднее значение и дисперсию случайной функции. При использовании совместной линеаризации можно определить так же первую гармонику периодических колебаний в нелинейной системе. В связи с тем, что в нелинейной системе функция плотности вероятности случайного сигнала может существенным образом отличаться от нормальной и при этом для характеристики точности работы знание лишь первых двух моментов не является достаточным в работе 113], был развит метод обобщенной статистически эквивалентной передаточной функции, основанный на разложении в ряд по ортогональным полиномам Чебышева — Эрмита случайных функций и позволяющий определить высшие моменты этих функций в нелинейной системе. Основная идея метода статистической линеаризации [5], [19] заключается в аппроксимации существенно нелинейных преобразований линеаризованной зависимостью, эквивалентной нелинейному преобразованию по первым двум моментам случайных функций, т. е. по среднему значению и дисперсии. Разумеется, что эта эквивалентная линеаризованная зависимость имеет различный вид для разных существенно нелинейных элементов, а также зависит от вероятностных характеристик случайного сигнала на входе нелинейного элемента. Рассмотрим нелинейное преобразование, соответствующее реальной статической характеристике безынерционного нелинейного элемента
Преобразуемый случайный процесс
где Представим сигнал
где К — эквивалентные статистические передаточные коэффициенты по математическому ожиданию и дисперсии, которые необходимо определить. Первое предположение, являющееся исходным при определении этих коэффициентов, — это соблюдение равенств математического ожидания и дисперсии для случайного сигнала на выходе реального нелинейного и эквивалентного линейного элементов. Тогда коэффициент может быть определен как отношение математического ожидания
Для коэффициента
где Второе предположение, принимаемое при статистической линеаризации, основано на требовании минимума среднего квадрата разности между случайным сигналом на выходе нелинейного элемента и случайным сигналом на выходе эквивалентного линейного элемента. Это условие можно записать следующим образом:
Раскроем это выражение:
В формуле (XVI 1.8) черта сверху означает математическое ожидание. Взяв частные производные от выражения (XVI 1.8) по
где Использование при расчетах коэффициента (XVI 1.6) дает несколько завышенное значение дисперсии, а использование коэффициента (XVI 1.9) несколько заниженное. Поэтому при расчетах в качестве эквивалентного коэффициента по случайной составляющей можно взять следующее значение:
Заметим, что при статистической линеаризации в отличие от обычной линеаризации нелинейных функций, основанной на их разложении в ряд Тейлора в окрестности некоторой рабочей точки, средние характеристики сигналов могут быть рассчитаны точно. Теперь рассмотрим общие формулы для определения эквивалентных коэффициентов усиления. Пусть задана одномерная нормальная плотность вероятности). Тогда формулы для коэффициентов будут иметь вид
Произведем расчет коэффициентов по формулам (XVII. 11), (XVII.12) и (XVII.13) для нелинейной характеристики типа кубической параболы, которая аналитически может быть представлена формулой
При вычислении коэффициентов будем считать, что математическое ожидание случайного сигнала
считая при этом, что наличие математического ожидания смещает лишь рабочую точку на нелинейной характеристике. Прежде чем вычислять значения коэффициентов, нормируем случайный сигнал Тогда формулу (XVII. 15) можно записать следующим образом:
Теперь, подставляя формулу (XVII. 16) в выражения (XVII. 11), (XVII. 12) и (XVII.13) вместо
Если сигнал на выходе нелинейного преобразования зависит как от самого входного сигнала, так и от его производных, т. е.
что имеет место, когда нелинейная характеристика неоднозначна или является инерционной, то статистическую линеаризацию этой характеристики можно произвести, определив эквивалентные усиления по сигналу и его производным. Для частного случая, когда
эти коэффициенты можно определить по критерию минимума средней квадратической ошибки
где коэффициенты
|
1 |
Оглавление
|