Главная > Основы моделирования и первичная обработка данных
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

3.1.2. Понятие математической модели.

Математическая модель — это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими объектами. Математические модели, в описании которых используются случайные величины, называют вероятностными или стохастическими. Всякая модель является упрощенным представлением действительности, и искусство моделирования состоит в знании того, что, где, когда и как можно и нужно упростить. Это знание естественно приходит с опытом.

Следующий пример поможет читателю «прочувствовать» ряд узловых моментов и некоторые общие «тонкие места»,

с которыми приходится сталкиваться исследователю в процессе реалистического моделирования.

Рассмотрим эксперимент, в котором каждый из испытуемых прочитывает текст, набранный шрифтом , и эквивалентный ему по трудности текст, набранный шрифтом Б. В обоих случаях фиксируется время затрачиваемое испытуемым на чтение. Пусть — время, потребовавшееся испытуемому на чтение контрольных текстов, набранных соответственно шрифтами А и Б. Один из возможных простых вариантов математической модели данной ситуации может быть описан следующим образом:

где — случайная величина, отражающая скорость чтения испытуемого и не зависящая от шрифта, — постоянные, зависящие только от шрифта, a — взаимно независимые случайные ошибки со средними значениями, равными нулю, и с одинаковыми дисперсиями . В правую часть уравнений (3.1) входит больше величин, чем в левую. Это означает, что оценить основные числовые характеристики величин по наблюдениям нельзя. Более того, даже при отсутствии в модели ошибок и , т. е. в ситуации, когда в левой части величин, а в правой — только найти без дополнительных соглашений величины и основные числовые характеристики случайных величин также нельзя. (В подобных случаях иногда принято говорить, что модель неизмерима относительно имеющихся опытных данных.) Однако, если в задачу исследования входит только сравнение средней скорости чтения двух анализируемых шрифтов, то неизмеримость модели нам не мешает. В самом деле, случайная величина

имеет положительное среднее значение, если шрифт Б более удобен для чтения, чем шрифт , и отрицательное среднее значение — в противном случае. Оценка же разности

по значениям уже не представляет труда. Аналогично, если бы нам требовалось охарактеризовать меру случайного разброса в скорости чтения каждого из испытуемых (т. е. оценить дисперсию ее определение и вычисление см. в гл. 5 и 8), мы могли бы найти дисперсию случайных величин

и вычесть из нее величину определяющую вклад случайных ошибок в модели (3.3). В данном случае дисперсию мы оцениваем, не определяя для каждого испытуемого, а воспользовавшись тем, что — постоянные.

Таким образом, с помощью различных вариантов моде» ли (3.1) можно учесть: различие между испытуемыми, в скорости чтения; различие между средней скоростью чтения шрифтов А и Б; случайный характер времени, затрачиваемого испытуемым на чтение текста. Вместе с тем в ней пренебрегается возможной зависимостью разности от скорости чтения индивидуума и от того, в какой последовательности прочитываются тексты: сначала , а затем Б или наоборот. Кроме того, упрощением является и предположение о постоянстве дисперсий случайных погрешностей. Безусловно, для более тщательного изучения длительности чтения потребовалась бы более сложная модель, в которой должны были бы найти отражение указанные выше зависимости. Однако, если речь идет только о сравнении средних скоростей чтения шрифтов, то достаточно рассмотреть модель (3.2) — она свою роль выполняет: подсказывает достаточно эффективный способ анализа данных, отвергая при этом другой возможный (и слишком наивный) подход, при котором сначала усредняются в отдельности данные по каждому шрифту:

а затем производится сравнение средних , полученных якобы по двум независимым сериям наблюдений (это сравнение может быть осуществлено, например, с помощью критерия Стьюдента, см. п. 11.2.8). Последний метод на практике может привести к резкой потере эффективности выявления существующего различия между шрифтами,

так как наблюдения оказываются на самом деле существенно зависимыми из-за общего значения

В некотором смысле математическая модель является для исследователя тем же, чем для физика физическая лаборатория. Можно ставить эксперименты в «мире», порожденном моделью, и, если математическая модель является правдивым отражением действительности, результаты этих экспериментов применимы к реальному миру.

Говоря о применимости моделей к описанию реальной действительности, мы подразумеваем возможность их практического использования в качестве базы, отправной точки при выборе наилучшего способа статистической обработки исходных данных, а также при решении таких задач, как планирование, прогнозирование, оптимальное управление системами и процессами, оценка эффективности функционирования (или комплексной характеристики качества) сложной системы, диагностика (медицинская и техническая), нормирование.

1
Оглавление
email@scask.ru