3.1.2. Понятие математической модели.
Математическая модель — это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими объектами. Математические модели, в описании которых используются случайные величины, называют вероятностными или стохастическими. Всякая модель является упрощенным представлением действительности, и искусство моделирования состоит в знании того, что, где, когда и как можно и нужно упростить. Это знание естественно приходит с опытом.
Следующий пример поможет читателю «прочувствовать» ряд узловых моментов и некоторые общие «тонкие места»,
с которыми приходится сталкиваться исследователю в процессе реалистического моделирования.
Рассмотрим эксперимент, в котором каждый из испытуемых прочитывает текст, набранный шрифтом , и эквивалентный ему по трудности текст, набранный шрифтом Б. В обоих случаях фиксируется время затрачиваемое испытуемым на чтение. Пусть — время, потребовавшееся испытуемому на чтение контрольных текстов, набранных соответственно шрифтами А и Б. Один из возможных простых вариантов математической модели данной ситуации может быть описан следующим образом:
где — случайная величина, отражающая скорость чтения испытуемого и не зависящая от шрифта, — постоянные, зависящие только от шрифта, a — взаимно независимые случайные ошибки со средними значениями, равными нулю, и с одинаковыми дисперсиями . В правую часть уравнений (3.1) входит больше величин, чем в левую. Это означает, что оценить основные числовые характеристики величин по наблюдениям нельзя. Более того, даже при отсутствии в модели ошибок и , т. е. в ситуации, когда в левой части величин, а в правой — только найти без дополнительных соглашений величины и основные числовые характеристики случайных величин также нельзя. (В подобных случаях иногда принято говорить, что модель неизмерима относительно имеющихся опытных данных.) Однако, если в задачу исследования входит только сравнение средней скорости чтения двух анализируемых шрифтов, то неизмеримость модели нам не мешает. В самом деле, случайная величина
имеет положительное среднее значение, если шрифт Б более удобен для чтения, чем шрифт , и отрицательное среднее значение — в противном случае. Оценка же разности
по значениям уже не представляет труда. Аналогично, если бы нам требовалось охарактеризовать меру случайного разброса в скорости чтения каждого из испытуемых (т. е. оценить дисперсию ее определение и вычисление см. в гл. 5 и 8), мы могли бы найти дисперсию случайных величин
и вычесть из нее величину определяющую вклад случайных ошибок в модели (3.3). В данном случае дисперсию мы оцениваем, не определяя для каждого испытуемого, а воспользовавшись тем, что — постоянные.
Таким образом, с помощью различных вариантов моде» ли (3.1) можно учесть: различие между испытуемыми, в скорости чтения; различие между средней скоростью чтения шрифтов А и Б; случайный характер времени, затрачиваемого испытуемым на чтение текста. Вместе с тем в ней пренебрегается возможной зависимостью разности от скорости чтения индивидуума и от того, в какой последовательности прочитываются тексты: сначала , а затем Б или наоборот. Кроме того, упрощением является и предположение о постоянстве дисперсий случайных погрешностей. Безусловно, для более тщательного изучения длительности чтения потребовалась бы более сложная модель, в которой должны были бы найти отражение указанные выше зависимости. Однако, если речь идет только о сравнении средних скоростей чтения шрифтов, то достаточно рассмотреть модель (3.2) — она свою роль выполняет: подсказывает достаточно эффективный способ анализа данных, отвергая при этом другой возможный (и слишком наивный) подход, при котором сначала усредняются в отдельности данные по каждому шрифту:
а затем производится сравнение средних , полученных якобы по двум независимым сериям наблюдений (это сравнение может быть осуществлено, например, с помощью критерия Стьюдента, см. п. 11.2.8). Последний метод на практике может привести к резкой потере эффективности выявления существующего различия между шрифтами,
так как наблюдения оказываются на самом деле существенно зависимыми из-за общего значения
В некотором смысле математическая модель является для исследователя тем же, чем для физика физическая лаборатория. Можно ставить эксперименты в «мире», порожденном моделью, и, если математическая модель является правдивым отражением действительности, результаты этих экспериментов применимы к реальному миру.
Говоря о применимости моделей к описанию реальной действительности, мы подразумеваем возможность их практического использования в качестве базы, отправной точки при выборе наилучшего способа статистической обработки исходных данных, а также при решении таких задач, как планирование, прогнозирование, оптимальное управление системами и процессами, оценка эффективности функционирования (или комплексной характеристики качества) сложной системы, диагностика (медицинская и техническая), нормирование.