7.3.2. Многомерная центральная предельная теорема (см. [12, с. 105]).
Пусть — независимые и одинаково распределенные -мерные случайные величины с вектором средних значений и ковариационной матрицей Тогда при совместная функция распределения случайного вектора сходится (для любого значения векторного аргумента X) к совместной функции распределения -мерной нормальной случайной величины, имеющей вектор средних и ковариационную матрицу 2.
Замечание 1. Необходима известная осторожность при использовании центральной предельной теоремы в практике статистических исследований.
Во-первых, если предельный вид распределения суммы случайных слагаемых при определенных условиях всегда нормален и не зависит от вида распределения самих слагаемых, то скорость сходимости распределения суммы к нормальному закону существенно зависит от типа распределения исходных компонент. Так, например, при суммировании равномерно распределенных случайных величин уже при 6—10 слагаемых можно добиться достаточной близости к нормальному закону, в то время как для достижения той же близости при суммировании -распределенных слагаемых понадобится более 100 слагаемых.
Во-вторых, центральной предельной теоремой вообще не рекомендуется пользоваться для аппроксимации вероятностей на «хвостах» распределения, т. е. при оценке вероятностей событий вида где — возможные значения, близкие соответственно к левой и правой границам диапазона изменения исследуемого признака . Поскольку в этом случае числовые значения вероятностей
то из малости разностей вытекает из центральной предельной теоремы) вовсе не следует малость относительных ошибок аппроксимации
которые, как правило, оказываются чрезмерно большими. Так, например, пусть — нормированный среднедушевой доход в семье (соответственно — заработная плата работающих членов семьи и другие составляющие семейного дохода) и пусть нас интересует доля q семей с очень высоким доходом, а именно с доходом, не меньшим некоторого достаточно высокого уровня . Исследования показали, что точное значение этой доли в то время как соответствующая нормальная аппроксимация дала результат . Разность сама по себе мала (как и следует из центральной предельной теоремы), однако относительная погрешность нормальной аппроксимации в данном случае составляет десятикратную величину, т. е. . Особенно важным это предостережение оказывается при попытках использования нормальных аппроксимаций в задачах расчета зависимостей типа «предельная прочность (или пропускная способность) системы — вероятность разрушения (отказа в обслуживании)».
Замечание 2. Центральная предельная теорема позволяет проследить асимптотические связи, существующие между различными модельными законами распределения (см. гл. 6), с одной стороны, и нормальным законом — с другой. Опираясь на центральную предельную теорему, можно объяснить, в частности, следующие полезные для статистической практики факты:
1. Распределение -биномиальной случайной величины асимптотически (по ) нормально с