(1812 г.), и заключался он в том, что для широкого класса независимых случайных величин предельный закон распределения их нормированной суммы вне зависимости от типа распределения слагаемых стремится к нормальному закону распределения. Однако эта формулировка нуждается в уточнениях: что значит «нормированная» сумма случайных величин и в каком именно смысле закон распределения одной случайной величины стремится к закону распределения другой? Существует несколько вариантов точных формулировок центральной предельной теоремы, отличающихся друг от друга степенью общности и видом постулируемых ограничительных условий. Мы приведем здесь формулировку Линдеберга и Леви.
7.3.1. Центральная предельная теорема.
Если независимые случайные величины, имеющие один и тот же закон распределения со средним значением и с дисперсией , то по мере неограниченного увеличения функция распределения случайной величины
стремится к функции распределения стандартного нормального закона при любом заданном значении их аргументов, т. е.
для любого значения где .
Таким образом, центральная предельная теорема дает математически строгое описание условий, индуцирующих механизм нормального закона распределения (см. неформальное обсуждение этих условий в п. 6.1.5). Она оправдывает, в частности, закономерность той центральной роли, которую играет нормальное распределение в теории и практике статистических исследований. Содержание центральной предельной теоремы можно считать дальнейшим (после закона больших чисел) уточнением стохастического поведения среднего арифметического из ряда случайных величин.
Центральная предельная теорема может быть распространена в различных направлениях: когда случайные слагаемые не являются одинаково распределенными (формулировка А. М. Ляпунова); когда компоненты не являются независимыми; наконец, когда случайные величины h являются многомерными.