Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Динамика неголономных систем образовалась как самостоятельный раздел теоретической механики, когда было понято, что стандартный лагранжев формализм неприменим к системам с неинтегрируемыми связями. Развитие динамики неголономных систем связано с именами С. А. Чаплыгина, Г. Герца, П. Аппеля, Д. К. Бобылева, Н.Е.Жуковского и др. Значительная часть работ в данной области посвящена обобщению развитых для голономных систем аналитических методов на системы с неголономными связями. Достаточно полное изложение задач и методов неголономной механики можно найти, например, в монографии [9]. K настоящему времени динамика неголономных систем находит широкое применение в задачах современной техники, таких как движения автомобиля, самолетного шасси, железнодорожного колеса и др. Кроме того ее методы активно используются в теории электрических машин.

Существенную роль в развитии динамики неголономных систем сыграло знаменитое исследование С. А. Чаплыгина, посвященное задаче о качении тяжелого твердого тела вэащения по горизонтальной плоскости [11], в которой он проанализировав ошибку Э. Линделефа, получил правильные уравнения движения и провел полное исследование задачи для ряда частных случаев формы тела. В другой своей работе [12] С. А. Чаплыгина провел полное исследование задачи о качении динамически несимметричного шара по плоскости при единственном предположении о совпадении центра масс шара с его геометрическим центром. В этой работе С. А. Чаплыгин привел интегралы движения системы, нашел интегрирующий множитель и получил решение уравнений движения в квадратурах. Несмотря приведенную им геометрическую интер-

претацию, движение шара Чаплыгина в абсолютном пространстве практически не было изучено. Недавно в работе [4] на примере задачи о шаре Чаплыгина была показана связь между системами с неголономными связями и гамильтоновыми системами с нелинейной скобкой Пуассона.

Достаточно большой интерес также представляет обобщение задачи о шаре Чаплыгина, когда внутрь него помещен гироскоп. Впервые (еще до работ С.А.Чаплыгина) данную задачу в частной постановке, когда шар динамически симметричен, рассмотрел Д. К. Бобылев в работе [1]. Д.К. Бобылев показал, что несмотря на простоту геометрии тела траектории движения шара могут иметь интересную форму. Еще более частный случай данной задачи, когда ее анализ значительно упрощается, рассмотрел Н.Е.Жуковский в своей работе [5]. Позднее, в работе [8] А. П. Маркеев показал интегрируемость полной постановки задачи, когда шар динамически несимметричен, а момент гироскопа направлен произвольно. Однако несмотря на доказанную интегрируемость, проинтегрировать в квадратурах (или найти решение в каком-либо классе специальных функций) данную систему до сих пор не удалось. Не выполнен также и топологический анализ задачи. О движении в абсолютном пространстве, кроме частных постановок, также до сих пор ничего неизвестно.

В данной статье анализируется движение шара Чаплыгина с гироскопом и без него в абсолютном пространстве. В частности особенно подробно исследуются траектории точки контакта, которые можно воспроизвести в натурном эксперименте заставляя шар катится по плоскости, посыпанной, например, порошком ликоподия. Для различных типов движений в системе связанной с телом рассмотрены соответствующие движения в абсолютном пространстве. С помощью численных методов показано существование ограниченных траекторий движения шара в случае, когда задача сводится к некоторой гамильтоновой системе.

1
Оглавление
email@scask.ru