Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Не предполагая здесь подробно останавливаться на исторических и описательных аспектах, касающихся движения кельтских камней, отметим только, что они подробно обсуждаются в литературе, приведенной в книге [8]. Замечательные свойства кельтских камней были замечены Г. Т. Уолкером (G. T. Walker) в 1895 г., который дал их элементарное физическое описание. Задачей занимались также Г. Герглотц (1941), К. Магнус (1974), которые, в основном исследовали вопросы устойчивости. Мы будем в дальнейшем ссылаться на работы И.С.Астапова [1], А. В. Карапетяна [3, 4], А.П.Маркеева [7], имеющие непосредственное отношение к нашим результатам, а также на численную работу Линдберга, Лонгмана (R. E. Lindberg, R. W. Longman) [11], краткий анализ которой содержится в приложении. Среди других авторов, занимавшихся проблемой, видимо следует отметить Кейна и Левинсона (T. R. Kane, D. A. Levinson) [10], М.Паскаль [9].

Напомним, что необычное поведение кельтского камня заключается в следующем, Если его поместить на горизонтальную плоскость и закрутить в определенном направлении вдоль вертикальной оси, то он может устойчиво продолжать свое вращение. Если же направление вращения изменить на противоположное, то он вскоре перестает вращаться, начинает колебаться вокруг горизонтальной оси, а потом без внешнего воздействия меняет направление вращения вокруг вертикальной оси

на противоположное (явление реверса). Для некоторых моделей камней такие смены вращения могут наблюдаться при любом направлении вертикального вращения и происходят многократно. Популярное изложение физических опытов с кельтскими камнями содержится в статье Дж. Уолкера (J. Walker) в журнале Scientific American [12].

Существует несколько динамических моделей, иллюстрирующих поведение кельтского камня. Наиболее общая постановка заключается в исследовании движения твердого тела по горизонтальной плоскости с учетом силы тяжести и силы трения (диссипации), которое может быть, например, сухим (кулоновским) или вязким (пропорциональным скорости). Однако такая общая постановка не допускает подробного динамического анализа в силу своей сложности. Фактически здесь выполнено лишь несколько численных экспергментов.

Менее реалистической, но более простой и наглядной является неголономная модель движения кельтского камня. Отметим, что неголономные динамические системы занимают некоторое промежуточное положение между обычными лагранжевыми (и гамильтоновыми) и общими диссипативными системами. Например, как правило, неголономные системы обладают интегралом энергии (и в этом смысле являются консервативными и близкими к гамильтоновым), а с другой стороны — у них отсутствует инвариантная мера [6]. Отсутствие инвариантной меры типично для диссипативных систем, в то же время, гамильтоновы системы всегда обладают стандартной инвариантной мерой в силу теоремы Лиувилля.

Более подробно с различными формами уравнений неголономной механики можно ознакомиться по книгам [5,8]. В данной работе для вывода уравнений движения мы не будем пользоваться этими формами, а приведем уравнения движения кельтского камня без вывода, хотя их и легко получить из общих принципов динамики (закона изменения кинетического момента и некоторых кинематических уравнений). В частности, основным постулируемым свойством неголономной модели является наличие неинтегрируемой связи, состоящей в том, что скорость точки контакта тела и плоскости равняется нулю. Это условие сильно отличается от гамильтоновой модели полного проскальзывания (абсолютно гладкая плоскость) и не допускает действия силы трения скольжения. В этом случае говорят об абсолютно шероховатой плоскости (поверхности) и об условии полного сцепления. Несложно видеть, что при полном сцеплении (т.к. силы трения не совершают работы) имеется интеграл энергии и система является консервативной.

Неголономная модель динамики кельтского камня, как оказывается, ухватывает основные качественные свойства его движения, но вследствие отсутствия проскальзывания и наличия интеграла энергии все

эффекты (колебания и перевороты) проходят за существенно бо́льшее время, чем в реальных экспериментах. Тем не менее для первоначального физического описания такая модель применяется наиболее часто (см. [1, 3, 4, 5, 7, 9, 10]).

Рис. 1

Условие отсутствия проскальзывания между телом и плоскостью можно записать в виде
v+ω×r=0,

где r — радиус-вектор, соединяющий центр масс G с точкой контакта R,v,ω скорость центра масс и угловая скорость тела соответственно (см. рис. 1). В дальнейшем все вектора мы предполагаем спроецированными на оси, жестко связанные с твердым телом.

Уравнения движения твердого тела имеют вид (см. [5])
{M˙=M×ω+mr˙×(ω×r)+mgr×γ,γ˙=γ×ω,

где M=Iω+mr×(ω×r) кинетический момент тела относительно точки контакта, γ — единичный орт вертикали, mg вес тела. Уравнения (2) аналогичны классическим уравнениям Эйлера-Пуассона, описывающим движение тяжелого твердого тела вокруг неподвижной точки, они обладают двумя интегралами
H=12(M,ω)mg(r,γ),(γ,γ)=1

энергии и геометрическим. При этом предполагается, что вектора r и γ связаны соотношением, задающим гауссову проекцию
γ=gradF(r)|gradF(r)|

где F(r)=0 представляет собой уравнение поверхности тела в жестко связанных с ним осях.

В отличие от уравнений Эйлера-Пуассона, для уравнений (2) в общем случае уже отсутствует интеграл площадей и инвариантная мера, что приводит к новым динамическим эффектам, не типичным для гамильтоновых систем.

1
Оглавление
email@scask.ru