Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Здесь мы только сосредоточимся на некоторых геометрических и динамических особенностях по сравнению с параболоидом.

I. Геометрические и динамические оси совпадают (это собственно не ситуация кельтского камня, но в дальнейшем будет рассматриваться ее возмущение). При этом система (2) инвариантна при отражениях относительно трех взаимно перпендикулярных плоскостей. Как следствие, периодические решения (неподвижные точки отображения), лежащие в плоскостях a ) L=0,b)l=0,c)l=π2,32π являются вырожденными и они образуют целые кривые в трехмерном пространстве, окруженные инвариантными кривыми, задающими двумерные торы фазового потока (рис. 8). Между этими торами, видимо, возможна диффузия, однако, ее механизм еще не изучен. Кривая неподвижных точек соответствует колебаниям эллипсоида вокруг главных осей в теле и горизонтальных осей — в пространстве. Вертикальные вращения в этом случае также имеют мультипликаторы, равные по модулю единице.

II. Главные динамические оси повернуты вокруг одной геометрической оси e3 на угол δ. При этом сохраняется вырождение для колебательных решений в плоскости L=0, а мультипликаторы возможных вращений уже не равны по модулю единице. При E>E одно из вертикальных вращений вокруг оси e3 приобретает устойчивость. На рис. 9 показано рождение двух притягивающих множеств, одно при t+, другое при t, имеющих природу странных аттракторов (возможно, квазиаттракторов) — их показатели Ляпунова больше нуля. В отличие от параболоида к этим странным аттракторам притягиваются не все траектории — существует область в которой имеются описанные выше

вырожденные периодические решения и охватывающие их двумерные инвариантные торы.

III. Произвольное расположение осей. Пусть динамические оси e1e2 повернуты относительно оси l3 на малый угол δ, а далее ось e3 также наклонена относительно геометрической на некоторый малый угол ζ.

В этом случае пропадают все геометрические симметрии и с неподвижных точек, образующих кривую на рис. 8 b, снимается вырождение и они становятся изолированными. Как показывают эксперименты, точка, запущенная вблизи эллиптической неподвижной точки невозмущенной системы (соответствующей совпадению геометрических и динамических осей) долгое время движется вблизи кривой, которая в невозмущенном случае заполнена вырожденными неподвижными точками (рис. 10). Несложно показать, что здесь наблюдаются экспоненциально малые эффекты, обуславливающие существование почти инвариантного многообразия, содержащего возмущенные траектории. Отметим, что более изученным является гиперболический случай, т.е. когда в невозмущенной ситуации имеется гиперболическое многообразие (например, множество, заполненное неподвижными гиперболическими точками в отличие от кривой рис. 8 c). По теореме Хирша-Пью-Шуба при возмущении это гиперболическое многообразие сохраняется, хотя уже неподвижные точки на нем становятся изолированными или исчезают вовсе.

Для этой ситуации также характерно появление сложных аттракторов, а общая динамика является еще менее изученной. Отметим также, что вообще трехмерные отображения (как с мерой, так и без нее), к сожалению, пока очень слабо изученными, а задачи неголономной механики, рассмотренные в этой работе, представляют целый полигон, на котором могут быть опробованы новые математические методы.

После подготовки окончательного варианта статьи авторы узнали об интересной работе H. Broer, C. Simó, R. Vitolo Bifurcations and strong attractors in the Lorentz-84 climate model with seasond forcing, которую можно посмотреть на сайте www.maia.ub.es (2001 г., препринт 21). В ней разбирается неавтономная модель долгопериодических климаических изменений в атмосфере, предложенная Лоренцом в 1984 году, описываемая уравнениями
{x˙=axy2z2+aF(1+εcosωt),y˙=y+xybxy+G(1+εcosωt),z˙=z+bxy+xz,a,b,ε,ω= const 

где F,G являются периодическими функциями с периодом T=2πω. Исследование системы также сводится к трехмерному отображению. В указанной работе были обнаружены странные аттракторы и родственные сценарии перехода к ним при разрушении инвариантных циклов.

Авторы благодарны А. В. Карапетяну, В. В. Трещеву за полезные замечания.

1
Оглавление
email@scask.ru