Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Движение тяжелого динамически симметричного круглого диска по горизонтальной абсолютно шероховатой плоскости впервые исследовалось Г.Слессером (1861 г.) [28], Н. Феррерсом (1872 г.) [23], К. Нейманом (1886 г.) и А.Фиркандтом (1892г.), благодаря которым в конце концов (после неудачных попыток Неймана и Линделефа) появилась правильная форма уравнений движения. Эта форма отличается от обычных (лагранжевых или гамильтоновых) уравнений механики, поскольку связь, состоящая в том, что скорость точки контакта диска с плоскостью равна нулю, является неголономной. Мы здесь не будем подробно останавливаться на общих формах уравнений неголономной механики (которые можно найти, например, в [15, 17]), а воспользуемся далее достаточно очевидной формой этих уравнений, полученной из общих принципов динамики – закона сохранения кинетического момента, записанного в осях, жестко связанных с диском.

Интегрируемость задачи о качении диска была впервые установлена С. А. Чаплыгиным (1897), который свел ее к анализу гипергеометрических квадратур в работе [19], где он показал также интегрируемость задачи о качении тяжелого произвольного динамически симметричного тела вращения по горизонтальной плоскости – в последнем случае задача сводится к интегрированию линейного дифференциального уравнения второго порядка. Интегрирование уравнений движения диска в гиперэллиптических функциях обнаружили также в 1900 г. независимо друг от друга и от Чаплыгина П. Аппель [20] и Д. Кортевег [26]. Иногда, видимо, не совсем справедливо, задача о качении диска называется

задачей Аппеля-Кортевега (или просто задачей Аппеля). В 1903 г. тот же результат переоткрыл Э. Геллоп [24], используя, однако, функции Лежандра.

Несмотря на явные гипергеометрические квадратуры, вопрос о различных качественных свойствах движения диска долгое время практически не рассматривался – изучались в основном стационарные движения и их устойчивость (с соответствующей библиографией можно ознакомится по книге [15]). Только в работах С.Н.Колесникова [11], Ю.Н.Федорова [18] были отмечены некоторые качественные свойства движения диска. В первой работе показано, что почти при всех начальных условиях диск никогда не упадет на плоскость, а во второй предложена методика исследования приведенной системы. Аналогичные результаты для динамически несимметричного диска и диска, движущегося по наклонной плоскости (задач, которые не являются интегрируемыми), получены в $[1,8]$. Среди современных исследований по анализу качения диска следует отметить работы О.М.О’Рейли [27] и Р. Кашмена, Дж. Эрманса и Д. Кемпяйнена [22], а также А.С.Кулешова [12] посвященные изучению бифуркаций и устойчивости стационарных движений диска.

Общие результаты качественного анализа о качении тяжелого тела вращения получены в работе Н.К.Мощука [13]. В ней выполнен частотный анализ, обсуждается применение KAM-теории, а также получены основные качественные свойства для движения точки контакта. Оказывается, что точка контакта совершает сложное ограниченное движение: она периодически движется по некоторой замкнутой кривой, которая вращается как твердое тело с постоянной угловой скоростью вокруг неподвижной точки. При этом при выполнении некоторого резонансного соотношения между частотами возможен уход тела вращения на бесконечность.

В этой работе мы развиваем эти качественные соображения и дополняем их компьютерным анализом. Мы также приводим различные типы траекторий, которые вычерчивает точка контакта в неподвижной и вращающейся системах координат, они имеют любопытную форму, которую сложно заранее предсказать. Подробно исследована и доказана компьютерным образом гипотеза об уходе при выполнении условий резонанса. Приведены наиболее общая трехмерная бифуркационная диаграмма в пространстве первых интегралов и полный атлас ее сечений различными плоскостями, построенные с помощью компьютерных вычислений.

В работе также мы приводим новый способ редукции задачи к одностепенной интегрируемой гамильтоновой системе и подробно обсуждаем гамильтоновость различных вариантов уравнений движения задачи.

Categories

1
Оглавление
email@scask.ru