Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Уравнения движения динамически несимметричного шара с центром масс, совпадающим с геометрическим центром, можно записать в форме
M˙=M×ω+γ×Uγ,γ˙=γ×ω,M=Iω+Dγ×(ω×γ),D=ma2,
I=diag(I1,I2,I3) — центральный тензор инерции, U=U(γ) — потенциальная энергия. Уравнения (2.1) всегда имеют меру с плотностью ρ и первые интегралы вида
ρ=11D(γ,Aγ),A=(I+DE)1,E=δij,H=12(M,ω)+U(γ),F1=γ2=1F2=(M,γ).

При U=0 появляется еще интеграл F3=M2 и задача становится интегрируемой (С.А.Чаплыгин, 1903 г. [25]), соответствующее трехмерное отображение приведено на рис. 3 .

Как показано в [15], эта задача остается интегрируемой при добавлении потенциала Бруна
U=12k(Iγ,γ)

Интеграл F3 при этом несколько видоизменяется
F3=M2kdetA(γ,Aγ)

Как было указано авторами в [6], уравнения (2.1) после замены времени dτ=ρdt для любых потенциалов U становятся гамльтоновыми со скобкой Пуассона, которая нелинейна по фазовым переменным (M,γ) и имеет вид
{Mi,Mj}=εijkρ1(Mkgγk),{Mi,γj}=εijkρ1γk,{γi,γj}=0,g=D(ω,γ)=D(γ,AM)1D(γ,Aγ).

Скобка (2.3) является вырожденной, ее функциями Казимира являются интегралы F1,F2 (2.2). Гамильтониан, соответствующй скобке (2.3) получается из энергии (2.2), выраженной через моменты по формуле
H=12(M,AM)+12g(AM,γ)+U(γ).

После замены переменных K=ρM скобка Пуассона и гамильтониан прелставляются в форме
{Ki,Kj}=εijk(KkDρ2(K,γ)akγk),{Ki,γj}=εijkγk,{γi,γj}=0,H=12ρ2(K,AK)+12D(AK,γ)2+U(γ).

Таким образом, на нулевом уровне (K,γ)=0 скобка (2.5) переходит в скобку, описываемой алгеброй е(3), на которой записываются уравнения Эйлера — Пуассона и Кирхгофа [5].

Отметим, что для рассматриваемой задачи плотность меры ρ является приводящим множителем (по Чаплыгину [27]), с помощью которого неголономные уравнения сводятся к гамильтоновой системе. Сам Чаплыгин при интегрировании уравнений движения несимметричного шара использовал такое сведение, тредварительно введя неголономный аналог сфероконических координат. Можно поступить и обратным образом [25] и сначала сделать замену времени dτ=ρdt, получить гамильтонову систему, а затем ввести обычные сфероконические координаты и воспользоваться методом Гамильтона — Якоби.

В отличие от пуассоновой структуры (2.8), которая относится к системе, приведенной по полю симметрии, соответствующего собственному вращению, структура (2.12) относится к полной системе (1.1), (1.2).

K сожалению, нам не удалось распространить (поднять) приведенную структуру (2.8) на такую полную систему. Возможно, что это либо слишком сложно, либо этому препятствуют некоторые динамические эффекты. K сожалению, динамические эффекты, препятствующие гамильтоновости, почти совсем не изучены 1 [4].

1
Оглавление
email@scask.ru