Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Проблема существования, устойчивости и ветвления стационарных движений механических систем, допускающих первые интегралы, впервые была затронута в работах Э. Дж. Рауса $[1,2]$ и А.Пуанкаре [3], результаты которых получили дальнейшее развитие в работах [4-17]. Несмотря на то, ‘Іто общие теоремы метода Рауса справедливы для любых динамических систем, допускающих первые интегралы, большинство результатов [1-17] относится к голономным системам. Дело в том, что для голономных систем существование первых интегралов и стационарных движений связано, как правило, с наличием одних и тех же групп симметрий. Для неголономных систем, вообще говоря, это не так: как правило, стационарные движения существуют при наличии одних групп симметрий, а первые интегралы – при наличии других групп симметрий. Более того, первые интегралы неголономных систем (отличные от интеграла энергии в консервативном случае) существуют значительно реже, чем стационарные движения. Кроме того, даже при наличии первых интегралов, их явный вид, как правило, неизвестен.

В предлагаемом обзоре излагаются методы исследования стационарных движений неголономных механических систем. Общие положения иллюстрируются примерами из динамики твердого тела на абсолютно шероховатой горизонтальной плоскости.

Работа выполнена при финансовой поддержке РФФИ (01-01-00141), Ведущих научных школ России (00-15-96150) и гранта МАС (02-0106041).

Categories

1
Оглавление
email@scask.ru