Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.1. Постановка задачи. Рассмотрим задачу о движении без скольжения тяжелого твердого тела, опирающегося выпуклой поверхностью, в каждой точке которой однозначно определена нормаль, о горизонтальную плоскость [28]. Для описания движения тела введем две системы координат: неподвижную Пусть Уравнения движения тела, отнесенные к подвижной системе координат, имеют вид (3.1)-(3.4). При этом связь между векторами Система уравнений (3.1)-(3.4) (с учетом (5.1)) замкнута относительно переменных Замечание 5.1. Если ввести те или иные обобщенные координаты (например, углы Эйлера, определяющие ориентацию подвижной системы координат по отношению к неподвижной, и координаты центра масс тела в неподвижной системе координат), то системе (3.1)-(3.3) будут отвечать уравнения движения в форме уравнений Лагранжа первого рода; при этом роль неопределенных множителей играют проекции вектора С помощью первого и четвертого уравнений системы (3.1)-(3.4) можно определить реакцию опорной плоскости и исключить ее из второго уравнения этой системы. При этом уравнения движения тела примут вид Система (5.4) замкнута (с учетом (5.1)) относительно переменных В тех или иных обобщенных координатах системе (5.4) отвечают уравнения в форме Чаплыгина. Эта система также допускает два интеграла («энергии» и геометрический) Таким образом, тяжелое твердое тело на абсолютно шероховатой (скольжения нет) горизонтальной плоскости представляет собой консервативную неголономную систему Чаплыгина [25]. 5.2. Перманентные вращения. Уравнения (5.4) допускают установившиеся решения вида если постоянный (в подвижной системе координат) вектор которое получается из (5.4) с учетом (5.6) (при этом Умножая теперь уравнение (5.7) скалярно на единичный вектор оси При этом, очевидно, для существования действительного решения Заметим, что правая часть последнего неравенства неположительна, так как Таким образом, решениям (5.6) отвечает однопараметрическое семейство перманентных вращений тела следующего вида: тело касается опорной плоскости одной и той же своей точкой точку, с постоянной угловой скоростью Для простоты рассмотрим случай, когда одна из главных центральных осей инерции тела в одном из двух противоположных направлений ортогональна поверхности тела. Для определенности предположим, что этому условию удовлетворяет отрицательная полуось причем Пусть а уравнение функции Если 5.3. Устойчивость вращения кельтского камня. Полагая Здесь Характеристическое уравнение, отвечающее линеаризованной системе, которая получается из системы (5.11) отбрасыванием правых частей, имеет вид Это уравнение имеет два нулевых корня. Один из них обусловлен однопараметричностью семейства перманентных вращений (5.10) (свободный параметр — имеют отрицательные вещественные части, то перманентное вращение (5.10) устойчиво, причем всякое возмущенное движение, достаточно близкое к невозмущенному, асимптотически при Таким образом, согласно критерию Гурвица, перманентные вращения (5.10) с и неустойчивы при строгом нарушении хотя бы одного из неравенств (5.14), (5.15). Условия (5.15) накладывают ограничения только на распределение масс и геометрию поверхности тела, а также на абсолютную величину его угловой скорости (левые части неравенств (5.15) представляют собой четные функции Предположим, что Первое из этих условий можно считать выполненным всегда (если Итак, при выполнении условий (5.16) и и неустойчиво, если 5.4. Бифуркация Андронова-Хопфа в динамике кельтского камня. Заметим, что при нарушении неравенства Исключая переменные систему четырех уравнений относительно переменных отвечающего вращению (5.10) с критической угловой скоростью При сделанных выше предположениях (условие где Непосредственное отыскание корней вида (5.19) уравнения (5.13) сопряжено с громоздкими вычислениями, поэтому заметим, что производная по или вид причем функции Рассмотрим первый случай: уравнение (5.13) имеет корни (5.19) и (5.20). Тогда это уравнение можно представить в виде Согласно выражениям для коэффициентов Дифференцируя это соотношение по Далее, условие, отвечающее первому неравенству в (5.15), для уравнения (5.22), в котором коэффициент при Вычисляя производную по Очевидно, последнее выражение равно нулю при Аналогично рассматривается и второй случай, когда уравнение (5.13) имеет корни (5.19) и (5.21). Таким образом, при критическом значении угловой скорости (см. (5.17)) происходит строгая потеря устойчивости вращения (5.10). Согласно теореме Хопфа [32] это означает, что при значениях полной энергии, близких к критическому
|
1 |
Оглавление
|