Главная > НЕГОЛОНОМНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ (А.В.Борисов, И.С.Мамаев )
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Теория интегрирования уравнений движения механических систем с неголономными связями разработана не столь полно, как в случае голономных связей. Это обстоятельство имеет несколько причин. Во первых, уравнения неголономной механики имеют более сложную структуру, чем уравнения Лагранжа, описывающие динамику систем с интегрируемыми связями. В частности, неголономную систему нельзя охарактеризовать одной единственной функцией от ее состояния и времени (ср. с [1], гл. XXIV). Во-вторых, уравнения неголономной механики в общем случае не имеют инвариантной меры (простой пример указан в разд.5). Дело в том, что неголономные связи можно реализовать с помощью действия дополнительных сил вязкого анизотропного трения с большим коэффициентом вязкости [3]. Отсутствие инвариантной меры – характерное свойство систем с трением. Анизотропное трение в пределе совместимо с сохранением полной энергии. Однако на многообразиях уровней энергии могут возникать асимптотически устойчивые положения равновесия или предельные циклы (ср. [4]), что препятствует существованию дополнительных «регулярных» интегралов движения.

Наиболее распространенный способ интегрирования уравнений неголономной динамики основан на использовании имеющихся первых интегралов – «законов сохранения»: если группа Ли, действующая на

пространстве положений, сохраняет лагранжиан и порождающие ее векторы поля являются полями возможных скоростей, то уравнения движения имеют первый «векторный» интеграл – обобщенный интеграл кинетического момента [5],[6]. Этим способом решен ряд задач неголономной динамики, среди которых особо выделим задачу С. А. Чаплыгина о качении несимметричного шара по горизонтальной плоскости [5].

Попытки распространения метода Гамильтона – Якоби на системы с неголономными связями оказались неэффективными, как и попытки представить уравнения неголономной динамики в форме канонических уравнений Гамильтона. Оказалось, что с помощью обобщенного метода Гамильтона – Якоби можно найти в лучшем случае лишь частные решения уравнений движения. Эта работа содержит обстоятельный анализ этих вопросов.

Еще один общий подход к интегрированию неголономных уравнений основан на теории приводящего множителя С. А. Чаплыгина [5]: ищется замена времени (разная вдоль разных траекторий), с помощью которой уравнения движения приводятся к уравнениям Лагранжа или Гамильтона. Хотя такая замена может существовать лишь в исключительных случаях, с ее помощью решен ряд новых задач неголономной динамики (см. [5]). Отметим, что к гамильтонову виду уравнения движения иногда можно свести с помощью иных соображений (см. разд. 5).

Список точно решенных задач неголономной механики невелик: практически полная информация содержится в книгах [1],[5],[8]. В настоящей работе указаны некоторые новые интегрируемые задачи, рассмотрены особенности поведения траекторий неголономных систем в фазовом пространстве, а также предложены некоторые общие теоретические соображения, касающиеся методов интегрирования уравнений неголономной динамики.

Categories

1
Оглавление
email@scask.ru