Главная > Современные проблемы хаоса и нелинейности (Симо К., Смейл С., Шенсине А. и др.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Может вонизкнуть впечатление, что все изучаемые нами эффекты возникают из-за сильной гиперболичности матрицы (5), когда g достаточно велико, но существует другой большой параметр, который возникает здесь во всех видах динамики, порождаемой отображениями, сохраняющими площадь, а именно число итераций n. Даже если g мало, можно увидеть хаотические области. Мы показали на рис. 13 последовательность картинок, демонстрирующих, что тот же самый механизм действует и в случае малых g.

Мы взяли g=0.2 как и на рис. 1. Для демонстрации гиперболической структуры необходимо взять довольно большое число итераций. Наша стратегия здесь будет несколько отличаться от той, которую мы использовали раньше. С самого начала мы зафиксируем n=250, довольно большое число, а затем будем последовательно уменьшать размеры прямоугольника. На первом рис. 13а изображена та же самая область, что и на рис. 1 . Для рис. 13а используется отсекаюшее значение δ=0.02, а для рисунков 13 b,,f используется δ=0.05. Каждый последующий рисунок является увеличеным изображением квадрата, нарисованного на предыдущем (или маленького квадрата вокруг центра отмеченной окружности).

Последний рисунок этой последовательности явно демонстрирует гиперболическую структуру. Для того чтобы подчеркнуть совершенство этого рисунка мы представили на рис. 14а его версию, состоящую из линий, т. е. показаны только точки, в которых sinαn(p)=0.

Линии выглядят абсолютно прямыми, но в действительности они не пересекаются, создавая вместо этого квазипересечения. Ширина этого последнего квадрата равна d=3.32×1010 и, следовательно, типичный размер ячейки в этой области имеет порядок 1010. Можно ожидать, что ширина перешейков в квазипересечении будет иметь порядок 1030, если учесть закон сжатия в λ3 раз на итерацию, описанный в п. 2. Столь подробные детали изображены в правой части рис. 14 , где ширина квадрата равна 2.358×1027. Еще меньшие детали можно изучать при использовании арифметики произвольной точности. Это вполне доступно, но значительно увеличивает время вычислений.

1
Оглавление
email@scask.ru