Главная > Современные проблемы хаоса и нелинейности (Симо К., Смейл С., Шенсине А. и др.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Довольно большой вклад в основание науки эффективных вычислений внес А. Пуанкаре, получивший множество интересных результатов в этой области. Столетие спустя после его великих работ мы вновь возвращаемся к полученным им результатам. Настоящая работа посвящена отдельным аспектам как символических, так и численных эффективных вычислений.

В структуре исследований динамики (или в ее так называемом скелете) ключевую роль играют инвариантные объекты фазового потока: периодические орбиты, инвариантные торы, инвариантные устойчивые и неустойчивые многообразия, центральные многообразия и т. д. Они дают ключ к
\»C. Simó. Effective computations in hamiltorian dynamics. Preprint. Перевод А. В. Борисова, А. Г. Арзамасцева.

предсказанию или интерпретации поведения большинства точек в фазовом пространстве, следуя идее А. Пуанкаре о том, что лучше изучать все множество орбит, чем следить за какой-то конкретной.

Эти инвариантные объекты могут быть получены при комбинировании символических вычислений и численного продолжения по параметрам. Существенно также знать динамические свойства в окрестности этих объектов для создания надежных алгоритмов. Для проблем, которые превышают наши аналитические возможности, существуют методы анализа результатов приближенного моделирования, позволяющие судить о наличии инвариантных объектов.

Использование компьютера как средства для понимания поведения динамических систем, кажется, теперь не вызывает вопросов. Многие явления были первоначально открыты при помощи компьютерного моделирования, а затем получили теоретическое объяснение. Следует помнить, что на компьютере сложно увидеть некоторые очень мелкие детали динамики. Однако произведя вычисления с арифметикой высокой точности, можно все-таки увидеть очень мелкие детали. В этой статье такие вычисления не представлены. С другой стороны, нелинейные явления, возникающие вдали от «любого хорошо известного эталонного объекта или задачи», могут оказаться сложными для изучения чисто аналитическими методами. Лично я воспринимаю компьютерные результаты как информацию о динамике изучаемой системы. Из них возникают гипотезы, требующие доказательства. Также они могут использоваться для проверки (по крайней мере частично) гипотез, возникающих из теоретических построений. Можно сказать, что для средних размерностей и до среднего уровня детализации имеет смысл опираться на компьютерные результаты. Значение слова «средний» зависит от текущего уровня как аппаратного оборудования, так и алгоритмов. Кроме того, существует взаимосвязь между алгоритмами, используемыми в доказательствах, и алгоритмами, созданными для эффективных вычислений. В некоторых случаях первые могут быть успешно и эффективно запрограммированы, а вторые, созданные для получения компьютерного результата, преобразованы в теоретические доказательства.

В большинстве экспериментальных наук в настоящее время технологии позволяют исследователю получить большое количество информации о задаче при ее экспериментальном изучении вместо простого размышления о ее возможном поведении. Разумеется, исследователь должен предоставить и проверить всеми возможными способами некоторое последовательное описание собранных экспериментальных данных и должен очень тщательно
выбирать, какие свойства следует изучать экспериментально. Я не вижу никаких причин, почему некоторые математики не могли бы использовать подобный подход.

Текущее состояние компьютерной технологии позволяет проводить с разумными усилиями большой объем вычислений. Похоже, что в эту эпоху узким местом вычислений являются большой объем данных, используемых в символьных вычислениях и при хранении результатов символьных или численных экспериментов, а также визуализация и интерпретация результатов даже для небольших размерностей (например, в пределах от 4 до 10).

1
Оглавление
email@scask.ru