Главная > Дифракция упругих волн
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. Волны сдвига в слое с цилиндрической полостью

Рассмотрим упругий слой толщиной Пусть в этом слое содержится цилиндрическая полость радиуса продольная ось которой параллельна плоским граням слоя и совпадает с осью (рис. 9.15). Предположим, что волны сдвига в слое возбуждаются гармонической нагрузкой, приложенной к поверхности полости, а плоскости слоя свободны от напряжений [44]

Введем бесконечное количество вспомогательных систем координат с началами на оси так, что координаты начала в системе при при

Рис. 9.16.

Рис. 9.15.

Представляя решение (9.1) в виде

нетрудно установить, что оно удовлетворяет последним двум условиям (9.26). Ряд является решением уравнения (9.1), когда т. е. толщина слоя не кратна половине длины возбуждаемой волны. Ряд удовлетворяет уравнению (6.1), если Последнее неравенство эквивалентно требованию, чтобы на толщине не размещалось нечетное число четвертей длины волны. Остальные две суммы по в (9.27) являются решениями (9.1) при любых соотношениях между и длиной волны.

Представим теперь решение (9.27) в координатах

В (9.28) приняты следующие обозначения:

Удовлетворив первому условию (9.26), приходим к двум бесконечным системам линейных алгебраических уравнений

Бесконечные системы (9.29) аналогичны системам, полученным в § 5 седьмой главы. Учитывая неравенство

можно заключить, что системы, полученные из (9.29) заменой принадлежат к классу систем нормального типа, если Приближенное решение системы (9.29) может быть найдено методом редукции.

Ряд (9.27) с постоянными определенными из (9.29), является решением рассматриваемой задачи, если коэффициенты Фурье нагрузки при больших имеют порядок малости не ниже, чем

В случае, когда плоские поверхности слоя неподвижно закреплены, решение (9.1) представится в следующем виде:

Дальнейшее решение аналогично случаю свободных от напряжений плоских поверхностей слоя.

Применяя метод, описанный в § 1 настоящей главы, можно решить задачи дифракции волн сдвига для упругого слоя с несколькими цилиндрическими полостями или для полуслоя с полостями.

Рассмотрим, например, полуслой с единичной полостью (рис. 9.16). Полагаем, что все плоские поверхности слоя свободны от напряжений, а на поверхности полости заданы произвольные условия. Введем две последовательности систем координат как показано на рис. 9.16. Представляем решение уравнения (9.1) в форме

В этом случае условия на поверхностях будут удовлетворены. Применяя теперь теорему сложения цилиндрических функций, удовлетворяем краевым условиям на поверхности полости. В результате для определения получаем бесконечную систему алгебраических уравнений.

1
Оглавление
email@scask.ru