Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 9.4. Нечеткие модели многокритериальных задачС проблемой принятия коллективных решений тесно связана (хотя и несколько отлична от нее) задача многоцелевого (многокритериального) принятия решения. Многокритериальную оптимизацию в нечеткой обстановке можно представить и виде системы
Если все критерии рассматривать как равнозначные и сравнимые, то в соответствии с принципом слияния имеем набор
определяет взвешивание критериев [126]. Отметим, что В [47, 48] процедура взвешивания критериев рассматривается как отображение
В многокритериальном случае целевая функция есть векторная функция
Для дальнейшего сужения этого множества Нечеткая постановка задачи многокритериального выбора предполагает [26—28, 78, 79, 127], что известны множество сравниваемых альтернатив При построении решения может использоваться [78, 120] нечеткая средневзвешенная оценка
В [120] уровни принадлежности в оптимальном множестве определяются в виде пересечения нечетких оценок
Тогда нечеткое множество оптимальных альтернатив определяется функцией принадлежности
При
Таким образом, в итоге выбирается альтернатива с такой средневзвешенной оценкой отношения
Для повышения чувствительности данного метода определяется мера предпочтительности альтернативы по отношению к другим, в качестве которой выступает расстояние между конкретным значением оценки этой альтернативы и средним значением оценок по всем другим альтернативам. Однако более интересно проанализировать степень предпочтение некоторой альтернативы по отношению к ее ближайшей сопернице. Поэтому в [79] вместо
В работах [26, 27, 52, 53] показывается, что описание многокритериальных задач удобно проводить с помощью построения отношений предпочтения между альтернативами с последующим выделением нечеткого множества недоминируемых альтернатив. Например, в так называемой обобщенной модели НМП [141] в отличие от вышеописанных подходов, основанных на сравнении нечетких множеств в одном пространстве оценок по критериям, анализируются задачи, в которых возможна нечеткость всех компонентов системы принятия решения. Рассматриваются: а) множество допустимых альтернатив X (оно может быть нечетким Решение этой задачи определяется путем построения на множестве альтернатив X нечеткого отношения предпочтения, которое индуцируется исходным нечетким отношением Понятие структур доминирования и недоминируемых решений в многокритериальных задачах позволяет рассматривать общие случаи, в которых имеется информация о предпочтениях ЛПР. В [151] вводятся понятия нечетких выпуклых конусов и нечетких полярных конусов, обобщающих структуры, впервые построенные Частным случаем многокритериального подхода является задача линейной векторной оптимизации [117, 172]; для ее решения предложена конкретизация схемы Беллмана и Заде [71]. Примеры выделения одного конкретного решения из множества эффективных решений векторной максимизации методами нечеткого линейного программирования содержатся в [47, 53, 172]: предварительно найденные наилучшее и наихудшее решения служат границами нечетких диапазонов в соответствующей задаче нечеткого линейного программирования. Выбор конкретного решения из множества Парето можно также осуществлять с помощью метода целевого программирования, идея которого состоит в отыскании решений, расположенных как можно ближе к вектору одновременно недостижимых целей (идеальной точке) [23, 47]. Иначе задачу многокритериального выбора можно рассматривать как задачу группирования (кластеризации) альтернатив на основе введения на множестве X некоторого отношения различия (например, ультраметрики), описывающего расстояния между нечеткими подмножествами множества альтернатив [126]; в частности, могут применяться различные показатели размытости, в том числе нечеткая энтропия Де Люка и Термини [94, 54] (см. гл. 3). На ранних стадиях проектирования реальных систем (этапы анализа технического задания и разработки технического предложения) имеется набор признаков, по которым происходит экспертная оценка вариантов и выбирается в некотором смысле наилучший вариант конструкции. Поэтому в ходе анализа техническое задание целесообразно представлять в виде составной лингвистической переменной, смысл которой выражается с помощью набора эталонных функций принадлежности. Исходные данные удобно сгруппировать в матрицу возможных проектных решений (табл. 9.1): ее строки содержат описание альтернатив
Таблица 9.1 (см. скан) где
|
1 |
Оглавление
|