Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.6. СЛЕДСТВИЯ, ВЫТЕКАЮЩИЕ ИЗ ПРАВИЛ ДЖЕФФРИСАИз восьми правил, перечисленных в параграфе 1.5, вытекают важные следствия для теорий индуктивного процесса. Как замечает Джеффрис, «они исключают... всякое определение вероятности, которое определяет вероятность в терминах бесконечных множеств возможных наблюдений, поскольку мы практически не можем сделать бесконечного числа наблюдений. Предел Венна, гипотетическая бесконечная совокупность Фишера и система Уилларда Гиббса становятся для нас бесполезными, как только мы принимаем правило 3... Фактически становится недопустимым любое «объективное» определение вероятности в терминах реальных или возможных наблюдений. Это происходит потому, что если наши фундаментальные принципы хотя бы частично зависят от наблюдений или структуры реального мира, то мы должны признать одно из двух: либо 1) наблюдения, которые мы можем сделать, нам первоначально неизвестны — тогда мы не можем знать наших фундаментальных принципов и, следовательно, мы не имеем исходной точки, из которой мог бы начаться процесс; либо 2) мы уже знаем нечто априори о наших наблюдениях за структурой мира, но это запрещено правилом 5» [66, с. 11]. Далее он поясняет, что «существом нынешней теории является не вероятность, а просто частота. Фундаментальной идеей является введение разумного уровня уверенности, который удовлетворяет некоторым правилам непротиворечивости и в соответствии с этими правилами может быть формально выражен числом...» [66, с. 401]. Таким образом, в терминах классификации теорий вероятностей Де Финетти теория Джеффриса является субъективной теорией, пытающейся разработать непротиворечивые процедуры поведения в условиях неопределенности в противоположность тем субъективным теориям, которые пытаются охарактеризовать психологическое и рациональное поведение в условиях неопределенности». Если рассматривать вероятность как представление разумной степени уверенности, а не частоты, то вероятности, выраженные числами, могут быть связаны со степенями нашего доверия к высказываниям об эмпирических явлениях. Это является характерной особенностью байесовского подхода к выводу. Или, как ставит проблему Джеффрис, «существует достаточно веская примитивная идея выражения степени доверия, которое разумно иметь по отношению к некоторому высказыванию, даже если мы не в состоянии ни доказать, ни опровергнуть это предложение дедуктивно» [66, с. 15]; например, когда исследователь, рассматривая некоторое конкретное объяснение наблюденного явления, может сказать, что это объяснение «вероятно, истинно». Байесовский подход, и теория Джеффриса в особенности, включает квантификацию таких высказываний, как «вероятно, истинно» и «вероятно, ложно», путем использования числовых вероятностей для представления степеней доверия или уверенности, которую индивидуум питает к некоторому высказыванию. Используя в этой связи вероятности, мы автоматически допускаем, что высказывание может оказаться необоснованным в соответствии с правилом 4. Почти так же, в той мере, в которой естественный мыслительный процесс ассоциирует вероятности с неопределенными высказываниями, мы можем утверждать, что формализация этой процедуры в байесовском подходе соответствует правилу 7 Джеффриса. Разумеется, степень нашей разумной уверенности в некотором высказывании, например высказывании об экономическом поведении, дедуцированном из гипотезы перманентного дохода, зависит от состояния нашей информации на данный момент времени. Поэтому в общем случае вероятность, представляющая степень нашей разумной уверенности в некотором предложении, всегда есть условная вероятность, при условии нынешнего состояния нашей информации. По мере изменения нашей информации относительно какого-либо конкретного высказывания мы пересматриваем его вероятность или нашу уверенность в нем. Этот процесс пересмотра вероятностей, связанных с высказываниями, по мере поступления новой информации составляет существо обучения на опыте. Из последующего изложения мы увидим, что процесс пересмотра вероятностей, представляющих степени уверенности в высказываниях, по мере поступления новой информации может быть операционализован и квантифицирован в соответствии с правилом 3 путем использования простого результата теории вероятностей, называемого теоремой Байеса.
Рис. 1.1. Процесс пересмотра вероятностей при получении новых данных Схематически процесс пересмотра вероятностей при поступлении новых данных (обозначены через заключенную в наших новых данных; иными словами, Если мы заинтересованы в параметре Крайне важно понять, что процедура, представленная графически на рис. 1.1 и описанная словесно выше, операциональна и приложима в целях практического анализа широкого спектра моделей и проблем в эконометрии и других областях науки. Это так и должно быть, потому что обрисованная выше в общей схеме процедура является центральной в индуктивном процессе, как его представляют себе Джеффрис и другие. Фундаментальную важность представляет факт признания того, что существует единый и операциональный подход к проблемам вывода в эконометрии и других областях знаний. Изучаем ли мы, например, адаптивные модели, основанные на анализе временных рядов, простые регрессионные модели или модели, представляющие собой «системы одновременных уравнений», подход и принципы останутся неизменными. Эта точка зрения резко контрастирует с другими подходами к выводу, которые предлагают индивидуальные методы и принципы для решения различных проблем. Поскольку в прошлом большинство эконометриков пользовалось в своей работе небайесовскими методами, весьма интересно и полезно сравнить байесовский и небайесовский подходы к анализу широкого спектра моделей и проблем. В последующих главах автор пользуется именно этим сравнительным подходом, ибо, как несколько лет назад заметил Анскомб, говоря о состоянии статистической науки, «правильная оценка ситуации может быть получена только в результате сопоставления классического и байесовского подходов к разнообразным статистическим проблемам, выяснения того, что делает каждый из подходов и насколько хорошо он это делает» [5, с. 21].
|
1 |
Оглавление
|