Главная > Методы статистического последовательного анализа и их радиотехнические приложения
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.2.2. Статистический выбор между вероятностными гипотезами.

Пусть выдвигаются две вероятностные гипотезы относительно плотности случайной величины

Ставится задача выбора между ними на основании реализации случайной величины

В общем случае компоненты случайной величины являются зависимыми одномерными случайными величинами (см. § 1.8).

Однако в математической статистике, как правило, рассматривают случай, когда все являются независимыми одинаково распределенными случайными величинами.

В этом случае (1.3) можно рассматривать как реализаций (испытаний) одной и той же случайной величины и выдвигать гипотезы о параметре а не совместной многомерной плотности

а одномерной плотности

В этом случае удобна также и более старая статистическая терминология [9]. В ней вместо двух гипотез

говорят о двух генеральных совокупностях

С последними связаны представления о «бесконечных» совокупностях значений

распределенных в соответствии с

Конечная совокупность значений называется выборкой из генеральной совокупности, значения выборочными значениями, а их число объемом выборки. Иногда значения называются испытаниями, числом испытаний.

Конечность выборки, на основании которой проводится выбор между гипотезами может привести к ошибкам. Поэтому заранее назначаются допустимые вероятности ошибок, их величина диктуется практическими соображениями.

Ошибки могут быть двух родов. Может быть ошибка первого рода, когда принимается гипотеза а на самом деле верна гипотеза Ошибка второго рода имеет место, когда принимается гипотеза а на самом деле верна гипотеза Вероятность ошибок первого и второго рода обозначим соответственно Можно показать, что а т. е. их задание произвольно лишь в указанных пределах. На практике интерес представляет задание достаточно малыми.

В дальнейшем изложении, говоря о выборе между гипотезами, мы будем понимать под этим описанный выше статистический выбор между вероятностными гипотезами.

1
Оглавление
email@scask.ru