11.3. Взвешенный метод наименьших квадратов
11.3.1. Нормальные уравнения
Если использовать взвешенный метод наименьших квадратов с (положительными) весами
то нормальные уравнения имеют вид
где
(эта матрица равна матрице
из § 3.6). Записывая уравнения в виде
мы видим, что здесь можно использовать все методы § 11.2, если работать с матрицами
т. е. умножить
строку матрицы
на
. В то же время интересно отметить, что, как мы увидим ниже, в методах Холецкого, Грама-Шмидта и Гивенса извлечения квадратных корней можно и избежать.
11.3.2. Метод Холецкого Из уравнения
вытекает, что
поскольку введение диагональной матрицы
влияет только на нормы векторов-столбцов матрицы
не изменяя их взаимной ортогональности. Поэтому, действуя также, как и в (11.11), получаем разложение
где
есть диагональная матрица с положительными диагональными элементами. Чтобы найти
поступаем следующим образом. Решаем сначала уравнение
и затем уравнение (11.31)
Приведенные выкладки показывают, что процедуру квадратного корня [Martin и др. (1965)], кратко упомянутую в последней части разд. 11.2.2, можно легко приспособить и для взвешенного метода наименьших квадратов. Надо просто вместо
в (11.12) использовать
и
11.3.3. Метод Грама-Шмидта
Алгоритм, описанный в разд. 11.2.4, легко видоизменить для использования его во взвешенном методе наименьших квадратов. В процессе преобразования матрицы X к матрице
можно запоминать элементы диагональной матрицы
Поэтому можно применить метод разд. 11.3.2, в частности (11.31), если использовать
вместо X и запоминать
вместо
11.3.4. Метод Джентлмена
Рассмотрим сначала задачу отыскания матриц
для которых
Используя замечания, аналогичные сделанным в разд. 11.2.4, рассмотрим преобразование строки произведения
и шкалированной строки матрицы X:
В результате перейдем к строкам [Gentleman (1973, 1974а)]
где
и
Это означает, что преобразованные строки можно представить как строку новой матрицы
и новую шкалированную строку матрицы X, масштабный множитель которой может и измениться. Запоминание матриц
требует не большего объема памяти, чем запоминание матрицы
и указанные модернизированные формулы не только позволяют избежать извлечения квадратных корней, но и требуют вдвое меньшего числа операций [Gentleman (1974а, с. 452)]. В невзвешенном случае мы всегда полагаем
В случае же взвешенного метода наименьших квадратов мы полагаем
равным весу до, придаваемому отдельной строке матрицы X, и поэтому получаем
вместо
Если применить указанный метод к матрице
то получаем матрицу
где