Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.7. ПОСТРОЕНИЕ АДДИТИВНОЙ ФУНКЦИИ ЦЕННОСТИ: ГИПОТЕТИЧЕСКИЙ ПРИМЕРВ этом параграфе мы на примере покажем, как можно построить аддитивную функцию ценности для четырех критериев. Предположим, что Вы — лицо, принимающее решение, — должны произвести выбор из 75 альтернативных действий и что каждое действие может быть оценено четырьмя критериями. Эти оценки представлены в табл. 3.1. Например, действие А имеет оценку 7,5 по критерию Таблица 3.1. Оценки эффективности альтернативных действий по четырем критериям
Примем, что критерии Ваша задача состоит в следующем: имея оценки эффективности этих 75 действий по 4 критериям, нужно выбрать одно действие, наилучшее для Вас. Иначе говоря, каким образом Вы могли бы провести систематизированный анализ своих мнений об этих критериях, чтобы четко выразить свою пока неявную структуру предпочтений? При рассмотрении имеющихся оценок можно, однако, заметить, что действие Внизу табл. 3.1 отмечено, что 75 оценок по критерию никакое действие не имеет оценку лучше, чем 12,00, и хуже, чем 13,50. Четверку чисел
Рис. 3.24. Профили эффективности действий 3.7.1. Правомерность использования аддитивной функции ценности. Предположим теперь, что Вы как лицо, принимающее решение, считаете, что любая пара критериев не зависит по предпочтению от остальных критериев. Так, например, предположим, что замещения для критериев
где а)
Мы можем считать функцию табл. 3.1, мы видим, что худшая оценка Стоящая сейчас перед Вами задача — определение подходящих функций 3.7.2. Построение компонент функции ценности. Одна из возможных процедур определения функций Вначале мы нормализуем
то
Если мы уступаем некоторое количество единиц по критериям Предположим, что точка, средняя по ценности между 2,0 и 9,0, есть 4,0. Затем мы осуществляем ту же самую процедуру для определения точки, средней по ценности в интервале от 2,0 до 4,0. Пусть это будет 2,8, так что В дополнение к этому мы могли бы вначале, перед тем как назначать конкретные числа,
Рис. 3.25. Построение компоненты проверить качественным путем, является ли функция 3.7.3. Нахождение значений шкалирующих коэффициентов. Для удобства изложения введем некоторые специальные обозначения. Для каждого
Так как
так что когда
Отметим, что, когда Т является одноэлементным множеством
Один из возможных методов для определения Заметим, что когда Вас просят сравнить Такой метод анализа позволяет только установить неравенства для Продолжим разбор случая, когда
Тогда мы имеем
или
А так как предполагается, что компонента
Таким же образом мы можем определить соотношения между
и
т. е.
а также, что
и
так что
Из (3.36) -(3.38) и
При желании мы можем поставить дополнительные вопросы и на основании полученных ответов составить «переопределенную» систему уравнений (на практике совокупность полученных ответов наверняка окажется противоречивой). Эти противоречия аналитик может использовать для того, чтобы «побудить» лицо, принимающее решение, более внимательно отнестись к своим предпочтениям, и может быть, пересмотреть их. Можно надеяться, что причины противоречивости будут найдены, после чего будет установлена непротиворечивая система предпочтений. 3.7.4. Дополнительные замечания о функции X. Функция К, определенная на подмножествах множества
в) Таким образом, отыскание функции К родственно задаче установления подходящего вероятностного распределения на конечном выборочном пространстве. Очень часто при определении весовой меры А, точно так же, как и при нахождении численных значений вероятностной меры, нецелесообразно начинать с определения численных значений на «атомарном» уровне, т. е. в нашем случае с чисел
Рис. 3.26. Иерархическая структура целей, используемая при нахождении численных значений шкалирующих коэффициентов В подобном примере с иерархической структурой может оказаться более естественно сравнивать
Используя аналогию с теорией вероятностей, определим также условные весовые функции, как, например,
Укажем теперь, как находится, например, значение
Таким же образом мы получаем все остальные
Рис. 3.27. Иллюстративные значения шкалирующих коэффициентов для иерархической структуры на рис. 3.26 В подобной задаче может быть ясно, например, как назначить численные значения условных весов для подмножеств
|
1 |
Оглавление
|