Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Адаптивный режекторный фильтрВ некоторых случаях входной сигнал представляет собой сумму составляющей сигнала и аддитивной синусоидальной помехи. Обычно для подавления такой помехи используется режекторный фильтр. В этом подразделе рассматривается реализация режекторного фильтра с помощью адаптивного устройства подавления помех. Преимущества такого режекторного фильтра заключаются в том, что он позволяет регулировать полосу частот, формировать нули и осуществлять адаптивное слежение за точным значением частоты и фазы помехи. Кроме того, проводится анализ адаптивной режекции на одной частоте. Нетрудно показать, что эти результаты распространяются на случай, когда на эталонном входе имеется сигнал на многих частотах [49]. На рис. 12.6 приведена схема устройства подавления одночастотной помехи с двумя адаптивными весовыми коэффициентами. Положим, что на вход устройства может подаваться сигнал любого вида — случайный, детерминированный, периодический, импульсный и т. д. — или любая комбинация этих сигналов. На эталонном входе действует чистый синусоидальный сигнал Рассматривая прохождение сигнала от входа до выхода системы на рис. 12.6, можно найти линейную передаточную функцию устройств подавления помех. Для этого на рис. 12.7 построена подробная схема, реализующая алгоритм наименьших квадратов. Отметим, что алгоритм вычисления текущих значений весовых коэффициентов из (6.3) в соответствии с этой схемой имеет вид
Рис. 12.6. Одночастотный адаптивный режекторный фильтр
Рис. 12.7. Схема прохождения сигнала в одночастотном режекторном фильтре При
Сначала найдем импульсную характеристику звена от т. С (сигнал ошибки
где
что представляет собой входной импульс, амплитуда которого умножена на мгновенное значение
Свертка
где
где Соответствующий отклик в т. J, полученный аналогичным образом,
где
Отметим, что Теперь, исходя из (12.52), можно получить линейную передаточную характеристику устройства подавления помех следующим образом. При
и его передаточная функция есть
При замкнутой петле обратной связи между т. G и т. В передаточная функция звена от входа в т. А до выхода в т. С устройства подавления помех
Из равенства (12.55) следует, что на частоте
т. е. точно на окружности единичного радиуса под углами
т. е. внутри окружности единичного радиуса на расстоянии от начала координат
При медленной адаптации (т. е. при небольших значениях
который приблизительно равен 1.
Рис. 12.8. Передаточная функция одночастотного адаптивного устройства подавления помех: а — расположение полюсов и нулей; б — амплитудно-частотная характеристика Основной вывод состоит в том, что в практических случаях углы полюсов и нулей почти равны. На рис. 12.8 показано расположение полюсов, нулей и точек половинной мощности передаточной функции. Поскольку нули лежат на окружности единичного радиуса, глубина режекции в децибелах для передаточной функции на частоте
Форма АЧХ в полосе режекции обычно определяется добротностью Q, представляющей собой отношение центральной частоты к ширине полосы режекции:
Таким образом, устройство подавления одночастотной помехи при синусоидальном эталонном сигнале эквивалентно устойчивому режекторному фильтру. В общем случае глубина режекции адаптивного устройства выше, поскольку в результате адаптивного процесса даже при медленном изменении частоты эталонного сигнала поддерживается правильное для подавления соотношение фаз. На рис. 12.9 приведены результаты двух экспериментов, проведенных для оценки характеристик функционирования адаптивного режекторного фильтра. В первом случае входной сигнал представляет собой синусоиду единичной мощности с частотой, изменяющейся по 512 дискретным значениям. Синусоидальный эталонный сигнал имеет частоту (см. скан) Рис. 12.9. Результаты экспериментов по адаптивному подавлению одночастотной помехи: а — на вход устройства подается синусоидальный сигнал с шагом через 512 дискретных частот; б — на вход устройства подаются отсчеты Селого шума Разрешение но частоте дискретного преобразования Фурье в (7.43) Во втором эксперименте входной сигнал представляет собой некоррелированные отсчеты белого шума единичной мощности, а эталонный — аналогичен сигналу первого эксперимента. На рис. 12.9,б показан средний спектр по ансамблю из 4096 энергетических спектров выходного сигнала устройства подавления. В этом эксперименте не получена полная режекция из-за конечного разрешения по частоте алгоритма спектрального анализа. В этих экспериментах фильтрация синусоидального эталонного сигнала на заданной частоте приводит к подавлению составляющих входного сигнала на соседних частотах. Этот результат показывает, что при некоторых условиях частично могут подавляться и искажаться составляющие входного сигнала, даже если эталонный сигнал не коррелирован с ними. В практических случаях такое подавление возникает только в быстрых адаптивных процессах, т. е. при больших значениях За последнее время проведены другие эксперименты с эталонными входными сигналами, содержащими более одной синусоиды. При использовании адаптивных фильтров с многими весовыми коэффициентами (обычно адаптивных трансверсальных фильтров) достигается режекция на многих частотах. Для обеспечения необходимых коэффициента передачи и фазы фильтра для каждого синусоидального сигнала требуется два весовых коэффициента. При наложении на эталонный входной сигнал некоррелированного широкополосного шума необходимы дополнительные весовые коэффициенты. Полный анализ задачи режекции сигналов на многих частотах содержится в [21].
|
1 |
Оглавление
|