Главная > Исчисление конечных разностей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Теорема Перрона.

Уточнением теоремы Пуанкаре служит теорема Перрона, которая утверждает, что если для уравнения

условия теоремы Пуанкаре выполнении, кроме того, ни для какого целого х в нуль не обращается, то существует решений

этого уравнения, для каждого из которых

при всех от единицы до Доказательства этой теоремы мы приводить не будем. Отметим только, также без доказательства, что решения (66) будут линейно независимыми. В этом случае можно построить решение заданного уравнения, исходя из следующих соображений.

Из соотношения (67) следует, что

где когда Полагая в соотношении (68) последовательно получим следующий ряд равенств:

перемножение которых дает

откуда

Произведение

можно заменить произведением равных биномов

где есть некоторое среднее значение между и, следовательно, также стремится к нулю при возрастании аргумента. Обозначая еще через получим

так что общее решение заданного уравнения в силу линейной независимости частных решений изобразится в виде

Таким образом, теорема Перрона, дополняющая доказанную теорему Пуанкаре, позволяет выяснить поведение решения линейного однородного уравнения с переменными коэффициентами, и в этом — смысл и значение обеих теорем.

1
Оглавление
email@scask.ru