Главная > Вибрации в технике, Т. 4. Вибрационные процессы и машины
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. НАКЛОННАЯ ПЛОСКАЯ ПОВЕРХНОСТЬ, СОВЕРШАЮЩАЯ ПОСТУПАТЕЛЬНЫЕ КОЛЕБАНИЯ ПО ЭЛЛИПТИЧЕСКИМ ТРАЕКТОРИЯМ ПАРАЛЛЕЛЬНО ПЛОСКОСТИ НАИБОЛЬШЕГО СКАТА [5, 6]

Пусть неподвижная система координат, причем ось параллельна, а ось перпендикулярна вибрирующей плоской поверхности (рис. 16). Плоскость при этом предполагается вертикальной, а вибрирующая поверхность — перпендикулярной плоскости Пусть вибрирующая плоская поверхность совершает поступательные гармонические колебания одинаковой частоты как в продольном, так и в поперечном направлениях, т. е. перемещается по закону

где соответственно амплитуды перемещения продольной и поперечной составляющих колебаний; сдвиг фаз между этими составляющими.

Рис. 16. Материальная частица на плоской поверхности, совершающей колебания по эллиптическим траекториям параллельно плоскости наибольшего ската

Как следует из формул аналитической геометрии, (44) представляют собой параметрические уравнения эллипса с полуосями где

причем малая ось повернута относительно оси на угол у, удовлетворяющий равенству

Описанное движение, с одной стороны, используется в ряде вибрационных устройств, как более выгодное по сравнению с прямолинейными гармоническими колебаниями, особенно при режимах без подбрасывания (см., например, [42]); с другой стороны, эллиптические колебания часто возникают как результат искажения прямолинейных гармонических колебаний вследствие действия различных побочных факторов.

При замене на вид эллипса остается прежним, а направление движения точек плоской поверхности по эллипсам изменяется на противоположное. При этом, если считать, что то значениям будет соответствовать движение по часовой стрелке, а против часовой стрелки.

Уравнения относительного движения частицы по плоской поверхности имеют

где использованы те же обозначения, что и в параграфе 2 [см. (1) и (2)]. Параметр перегрузки [см. (5)] в рассматриваемом случае

При частица может двигаться без подбрасывания, а при происходит движение с подбрасыванием; сохраняет силу также все сказанное в параграфе относительно силы трения гипотез об изменении составляющих скорости при соударении частицы с поверхностью, а также об установившихся режимах движения частицы, их обозначениях и классификации (стр. 15—16). Путем некоторого видоизменения рассуждений и формул параграфа 2 могут быть изучены режимы движения частицы при отсутствии подбрасывания, причем можно использовать функции представленные на рис.

Поскольку поперечное движение частицы при движении с подбрасыванием не зависит от ее продольного движения, то все закономерности поперечного движения, рассмотренные в параграфе 2, относятся и к данному случаю, если только иметь в виду, что параметр перегрузки определяется теперь по (48). В частности, полностью сохраняет силу диаграмма режимов, представленная на рис. 6.

В данном случае формула для средней скорости движения частицы в режимах с достаточно интенсивным подбрасыванием, соответствующая (33), имеет вид

Как и ранее, учтено, что при регулярных соударениях справедливо соотношение (9); функция по-прежнему определяется (34) или по (рис. 10; формула (49) справедлива при выполнении условия (32).

При еще более интенсивном подбрасывании, когда из (49) получается приближенная формула

соответствующая (35); при из (50) находим что соответствует (36).

В частном случае отвечающем прямолинейным колебаниям под углом с амплитудой А, формулы (49) и (50) переходят соответственно в (33) и (35).

В частном случае круговых колебаний плоской поверхности следует положить где радиус траектории колебаний; а — число, равное 1, если движение по круговой траектории происходит по часовой стрелке, и равное —1, если имеет место движение против часовой стрелки. При этом (49) принимает вид

Направление движения точек плоской поверхности по круговым траекториям может существенно влиять на среднюю скорость движения частицы. Особенно сильно это влияние в случае горизонтальной поверхности когда изменение направления движения по окружности влечет за собой изменение знака скорости (рис. 17).

Рис. 17. Зависимость направления скорости вибротранспоргирования от направления движения точек поверхности при круговых колебаниях:

С ростом интенсивности колебаний, при прочих равных условиях, указанное влияние уменьшается.

Более подробные сведения, касающиеся случая эллиптических колебаний поверхности, приводятся в работах [5, 6], а случая круговых колебаний — также в работе [33].

1
Оглавление
email@scask.ru