Главная > Курс общей физики, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 99. Стоячие волны

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны просто накладываются одна на другую, не возмущая друг друга. Это утверждение называется принципом суперпозиции (наложения) волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают постоянной разностью фаз, волны называются когерентными. (Более строгое определение когерентности будет дано в § 120.) При сложении когерентных волн возникает явление интерференции, заключающееся в том, что колебания в одних точках усиливают, а в других точках ослабляют друг друга.

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, Дают стоячую волну.

Напишем уравнения двух плоских волн, распространяющихся вдоль оси х в противоположных направлениях:

Сложив вместе эти уравнения и преобразовав результат по формуле для суммы косинусов, получим

Уравнение (99.1) есть уравнение стоячей волны. Чтобы упростить его, выберем начало отсчета так, чтобы разность , стала равной нулю, а начало отсчета — так, чтобы оказалась равной нулю сумма Кроме того, заменим волновое число k его значением

Тогда уравнение (99.1) примет вид

Из (99.2) видно, что в каждой точке стоячей волны происходят колебания той же частоты, что и у встречных волн, причем амплитуда зависит от х:

В точках, координаты которых удовлетворяют условию

амплитуда колебаний достигает максимального значения. Эти точки называются пучностями стоячей волны. Из (99.3) получаются значения координат пучностей:

Следует иметь в виду, что пучность представляет собой не одну единственную точку, а плоскость, точки которой имеют значения координаты х, определяемые формулой (99.4).

В точках, координаты которых удовлетворяют условию

амплитуда колебаний обращается в нуль. Эти точки называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов имеют значения

Узел, как и пучность, представляет собой не одну точку, а плоскость, точки которой имеют значения координаты х, определяемые формулой (99.5).

Из формул (99.4) и (99.5) следует, что расстояние между соседними пучностями, так же как и расстояние между соседними узлами, равно . Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Обратимся снова к уравнению (99.2). Множитель при переходе через нулевое значение меняет знак. В соответствии с этим фаза колебаний по разные стороны от узла отличается на Это означает, что точки, лежащие по разные стороны от узла, колеблются в противофазе. Все точки, заключенные между двумя соседними узлами, колеблются синфазно (т. е. в одинаковой фазе). На рис. 99.1 дан ряд «моментальных фотографий» отклонений точек от положения равновесия.

Первая «фотография» соответствует моменту, когда отклонения достигают наибольшего абсолютного значения. Последующие «фотографии» сделаны с интервалами в четверть периода. Стрелками показаны скорости частиц.

Продифференцировав уравнение (99.2) один раз по t, а другой раз по х, найдем выражения для скорости частиц и для деформации среды :

Уравнение (99.6) описывает стоячую волну скорости, а (99.7) — стоячую волну деформации.

На рис. 99.2 сопоставлены «моментальные фотографии» смещения, скорости и деформации для моментов времени 0 и Из графиков видно, что узлы и пучности скорости совпадают с узлами и пучностями смещения; узлы же и пучности деформации совпадают соответственно с пучностями и узлами смещения. В то время как достигают максимальных значений, обращается в нуль, и наоборот.

Рис. 99.1.

Рис. 99.2.

Соответственно дважды за период происходит превращение энергии стоячей волны то полностью в потенциальную, сосредоточенную в основном вблизи узлов волны (где находятся пучности деформации), то полностью в кинетическую, сосредоточенную в основном вблизи пучностей волны (где находятся пучности скорости). В результате происходит переход энергии от каждого узла к соседним с ним пучностям и обратно. Средний по времени поток энергии в любом сечении волны равен нулю.

1
Оглавление
email@scask.ru