Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 129. Дифракция Фраунгофера от щелиПусть на бесконечно длинную щель падает плоская световая волна (рис. 129.1). Поместим за щелью собирающую линзу, а в фокальной плоскости линзы — экран. Волновая поверхность падающей волны, плоскость щели и экран параллельны друг другу. Поскольку щель бесконечна, картина, наблюдаемая в любой плоскости, перпендикулярной к щели, будет одинакова. Поэтому достаточно исследовать характер картины в одной такой плоскости, например в плоскости рис. 129.1. Все вводимые в дальнейшем величины, в частности угол
Рис. 129.1. Разобьем открытую часть волновой поверхности на параллельные краям щели элементарные зоны ширины Поэтому множитель
где С — константа. Обозначим алгебраическую сумму амплитуд колебаний, возбуждаемых в некоторой точке экрана всеми зонами, через
Отсюда
Теперь определим фазовые соотношения между колебаниями dE. Сопоставим фазы колебаний, возбуждаемых в точке Р элементарными зонами с координатами О и
(к — длина волны в данной среде). Таким образом, колебание, возбуждаемое элементарной зоной с координатой х в точке Р (положение которой определяется углом
(имеется в виду вещественная часть этого выражения). Проинтегрировав выражение (129.1) по всей ширине щели, найдем результирующее колебание, возбуждаемое в точке Р открываемым щелью участком волновой поверхности:
Вынесем множители, не зависящие от х, за знак интеграла. Кроме того, введем обозначение
В результате получим
Выражение в фигурных скобках определяет комплексную амплитуду А у результирующего колебания. Приняв во внимание, что разность экспонент, деленная на
(мы подставили значение (129.2) для Выражение (129.3) является вещественным. Его модуль представляет собой обычную амплитуду результирующего колебания:
Для точки, лежащей против центра линзы, При значениях
амплитуда обращается в нуль. Таким образом, условие (129.5) определяет положения минимумов интенсивности. Отметим, что бвтф представляет собой разность хода А лучей, идущих в точку Р от краев щели (см. рис. 129.1). Условие (129.5) легко получить из следующих соображений. Если разность хода А от краев щели равна Колебания от каждой пары соседних зон взаимно погашают друг друга, так что результирующая амплитуда равна нулю. Если для точки Р разность хода А равна Интенсивность света пропорциональна квадрату амплитуды. Следовательно, в соответствии с (129.4)
где Из формулы (129.6) получается, что График функции (129.6) изображен на рис. 129.3. По оси абсцисс отложены значения
Рис. 129.2.
Рис. 129.3. Количество минимумов интенсивности определяется ртношением ширины щели Поэтому
При ширине щели, меньшей длины волны, минимумы вообще не возникают. В этом случае интенсивность света монотонно убывает от середины картины к ее краям. Краям центрального максимума соответствуют значения угла <р, получающиеся из условия
В случае, когда
Решим задачу о дифракции Фраунгофера от щели методом графического сложения амплитуд. Разобьем открытую часть волновой поверхности на очень узкие зоны одинаковой ширины. Колебание, возбуждаемое каждой такой зоной, имеет одинаковую амплитуду
Таким образом, центральный максимум значительно превосходит по интенсивности остальные максимумы; в нем сосредоточивается основная доля светового потока, проходящего через щель. В случае, когда ширина щели очень мала по сравнению с расстоянием от щели до экрана, лучи, идущие в точку Р от краев щели, будут практически параллельными и в отсутствие линзы между щелью и экраном. Следовательно, при падении на щель плоской волны будет наблюдаться дифракция Фраунгофера. Все полученные выше формулы будут справедливыми, причем под
Рис. 129.4.
Рис. 129.5. Установим количественный критерий, позволяющий определить, какой вид дифракции будет иметь место в каждом конкретном случае. Найдем разность хода лучей от краев щели до точки Р (рис. 129.5). Применим теорему косинусов к треугольнику со сторонами
После несложных преобразований получим
Нас интересует случай, когда лучи, идущие от краев щели в точку Р, почти параллельны. При этом условии
В пределе при При конечных
дифракционная картина будет практически такой, как в случае дифракции Фраунгофера. При Из (129.12) следует, что
Таким образом, характер дифракции зависит от значения безразмерного параметра
Если этот параметр много меньше единицы, наблюдается, дифракция Фраунгофера, если он порядка единицы — дифракция Френеля; наконец, если этот параметр много больше единицы, оказывается применимым приближение геометрической оптики. Для удобства сопоставления представим сказанное в следующем виде:
Параметру (129.15) можно дать наглядное истолкование. Возьмем точку Р, лежащую против середины щели (рис. 129.6). Для этой точки число
Раскрыв скобки и отбросив слагаемое, пропорциональное
Таким образом, параметр (129.15) непосредственно связан с числом открытых зон Френеля (для точки, лежащей против середины щели). Если щель открывает малую долю центральной зоны Френеля Проследим за видоизменениями картины при удалении экрана от щели. При небольших расстояниях экрана от щели (когда Из сказанного ясно, что критерием применимости геометрической оптики является не малость длины волны по сравнению с характерным размером преграды (например, шириной шелй), а значение параметра (129.15) (он должен быть много больше единицы). Пусть, например, оба отношения
|
1 |
Оглавление
|