Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 120. КогерентностьКогерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласованности может быть различной. Соответственно можно ввести понятие степени когерентности двух волн. Различают времени у Временная когерентность. Описанный в предыдущем параграфе процесс интерференции является идеализированным. В действительности этот процесс гораздо более сложен. Это обусловлено тем, что монохроматическая волна, описываемая выражением
где
причем хаотические изменения функций Для простоты будем считать амплитуды
в виде
где
Мы получили функцию, у которой хаотические изменения претерпевает лишь фаза колебания. С другой стороны, в математике доказывается, что негармоническую функцию, например функцию (120.2), можно представить в виде суммы гармонических функций с частотами, заключенными в некотором интервале Лео (см. формулу (120.4)). Таким образом, при рассмотрении вопроса о когерентности возможны два подхода: «фазовый» и «частотный». Начнем с «фазового» подхода. Допустим, что частоты
где Всякий прибор, с помощью которого можно наблюдать интерференционную картину (глаз, фотопластинка и т. п.), обладает некоторой инерционностью. В связи с этим он регистрирует картину, усредненную по некоторому промежутку времени Пусть некоторая величина х изменяется скачками, равными Фаза волны, образованной наложением огромного числа цугов, порождаемых отдельными атомами, не может совершать больших скачков. Она изменяется случайным образом небольшими шагами, т. е. совершает случайные блуждания. Время когд, за которое случайное изменение фазы волны Для примера укажем, что квазимонохроматический свет, содержащий длины волн в интервале Расстояние Перейдем к выяснению роли немонохроматичности световых волн. Допустим, что свет состоит из последовательности идентичных цугов частоты В математике доказывается теорема Фурье, согласно которой любую конечную и интегрируемую функцию
Выражение (120.4) называется интегралом Фурье. Стоящая под знаком интеграла функция
где
Рис. 120.1 Пусть функция
График вещественной части этой функции дан на рис. 120.1. Вне интервала от
После подстановки пределов интегрирования и несложных преобразований приходим к формуле
Интенсивность
График функции (120.6) показан на рис. 120.2. Из рисунка видно, что интенсивность составляющих, частоты которых заключены в интервале Это обстоятельство позволяет связать длительность цуга
Отождествив
(знак Из соотношения (120.7) следует, что чем шире интервал частот, представленных в данной световой волне, тем меньше время когерентности этой волны. Частота связана с длиной волны в вакууме соотношением
Отсюда для длины когерентности получается следующее значение:
Рис. 120.2. Из формулы (119.5) вытекает, что разность хода, при которой получается максимум m-го порядка, определяется соотношением
Когда эта разность хода достигает значения порядка длины когерентности, полосы становятся неразличимыми. Следовательно, предельный наблюдаемый порядок интерференции определяется условием
откуда
Из (120.10) следует, что число интерференционных полос, наблюдаемых по схеме, изображенной на рис. 119.2, возрастает при уменьшении интервала длин волн, представленных в используемом свете. Пространственная когерентность. Согласно формуле Возникновение в некоторой точке пространства колебаний, возбуждаемых волнами с разными Пусть свет от источника падает на две узкие щели, за которыми находится экран (рис. 120.4).
Рис. 120.3.
Рис. 120.4. Интервал частот, испускаемых источником, будем считать очень малым, для того чтобы степень временной когерентности была достаточной для получения четкой интерференционной картины. Волна, пришедшая от участка поверхности, обозначенного на рис. 120.4 через О, создает нулевой максимум М в середине экрана. Нулевой максимум Нулевой максимум Отдельные участки источника света возбуждают волны, фазы которых никак не связаны между собой. Поэтому интерференционная картина, возникающая на экране, будет наложением картин, создаваемых каждым из участков в отдельности. Если смещение х много меньше ширины интерференционной полосы
или
При переходе от (120.11) к (120.12) мы опустили множитель 2. Формула (120.12) определяет угловые размеры источника, при которых наблюдается интерференция. Из этой формулы можно также определить наибольшее расстояние между щелями, при котором можно еще наблюдать интерференцию от источника с угловым размером
Совокупность волн с разными Поверхность, которая была бы волновой при условии монохроматичности источника, будем для краткости называть псевдоволновой. Мы могли бы удовлетворить условию (120.12), уменьшив расстояние между щелями d, т. е. взяв более близкие точки псевдоволновой поверхности. Следовательно, колебания, возбуждаемые волной в достаточно близких точках псевдоволновой поверхности, оказываются когерентными. Такая когерентность называется пространственной. Итак, фаза колебания при переходе от одной точки псевдоволновой поверхности к другой изменяется беспорядочным образом. Введем расстояние рког, при смещении на которое вдоль псевдоволновой поверхности случайное изменение фазы достигает значения
Угловой размер Солнца составляет около 0,01 рад, длина световых волн равна примерно 0,5 мкм. Следовательно, радиус когерентности приходящих от Солнца световых волн имеет значение порядка
Все пространство, занимаемое волной, можно разбить на части, в каждой из которых волна приблизительно сохраняет когерентность. Объем такой части пространства, называемый объемом когерентности, по порядку величины равен произведению длины временной когерентности на площадь круга радиуса Пространственная когерентность световой волны вблизи поверхности излучающего ее нагретого тела ограничивается размером рког всего в несколько длин волн. По мере удаления от источника степень пространственной когерентности возрастает. Излучение лазера обладает огромной временной и пространственной когерентностью. У выходного отверстия лазера пространственная когерентность наблюдается во всем поперечном сечении светового пучка. Можно было бы, казалось, наблюдать интерференцию, пропустив свет, распространяющийся от произвольного источника, через две щели в непрозрачном экране. Однако при малой пространственной когерентности падающей на щели волны пучки света, прошедшие через щели, окажутся некогерентными, и интерференционная картина будет отсутствовать. Юнг получил в 1802 г. интерференцию от двух щелей, увеличив пространственную когерентность падающего на щели света. Такое увеличение Юнг осуществил, пропустив предварительно свет через небольшое отверстие в непрозрачном экране. Прошедшим через это отверстие светом освещались щели во втором непрозрачном экране. Таким способом Юнг впервые наблюдал интерференцию световых волн и определил длины этих волн.
|
1 |
Оглавление
|