Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 101. ЗвукЕсли упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 16 до 20 000 Гц, то достигнув человеческого уха, они вызывают ощущение звука. В соответствии с этим упругие волны в любой среде, имеющие частоту, заключенную в указанных пределах, называют звуковыми волнами или просто звуком. Упругие волны с частотами, меньшими 16 Гц, называют инфразвуком; волны с частотами, превышающими 20 000 Гц, называют ультразвуком. Инфра- и ультразвуки человеческое ухо не слышит. Воспринимаемые звуки люди различают по высоте, тембру и громкости. Каждой из этих субъективных оценок соответствует определенная физическая характеристика звуковой волны. Всякий реальный звук представляет собой не простое гармоническое колебание, а является наложением гармонических колебаний с определенным набором частот. Набор частот колебаний, присутствующих в данном звуке, называется его акустическим спектром. Если в звуке присутствуют колебания всех частот в некотором интервале от v до Высота тонального звука определяется основной (наименьшей) частотой. Относительная интенсивность обертонов (т. е. колебаний с частотами Под интенсивностью звука понимают среднее по времени значение плотности потока энергии, которую несет с собой звуковая волна. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, которая называется порогом слышимости. Порог слышимости несколько различен для разных лиц и сильно зависит от частоты звука. Наиболее чувствительно человеческое ухо к частотам от 1000 до 4000 Гц. В этой области частот порог слышимости составляет в среднем около При интенсивностях порядка
Рис. 101.1. Порог болевого ощущения, так же как и порог слышимости, зависит от частоты (см. верхнюю кривую на рис. 101.1; данные, приведенные на этом рисунке, относятся к среднему нормальному слуху). Субъективно оцениваемая громкость звука возрастает гораздо медленнее, чем интенсивность звуковых волн. При возрастании интенсивности в геометрической прогрессии громкость возрастает приблизительно в арифметической прогрессии, т. е. линейно. На этом основании уровень громкости L определяется как логарифм отношения интенсивности данного звука
Исходная интенсивность Единица уровня громкости L, определяемого формулой (101.1), называется белом (Б). Обычно пользуются в 10 раз меньшими единицами — децибелами (дБ). Значение L в децибелах определяется формулой
Отношение двух интенсивностей
С помощью этой формулы может быть выражено в децибелах уменьшение интенсивности (затухание) волны на некотором пути. Так, например, затухание в 20 дБ означает, что интенсивность уменьшается в 100 раз. Весь диапазон интенсивностей, при которых волна вызывает в человеческом ухе звуковое ощущение (от Таблица 101.1
Энергия, которую несут с собой звуковые волны, крайне мала. Если, например, предположить, что стакан с водой полностью поглощает всю падающую на него энергию звуковой волны с уровнем громкости в 70 дБ (в этом случае количество поглощаемой в секунду энергии будет составлять примерно Ультразвуковые волны могут быть получены в виде направленных пучков, подобных пучкам света. Направленные ультразвуковые пучки нашли широкое применение для целей локации (обнаружения предметов и определения расстояния до них) в воде. Впервые идея ультразвуковой локации была высказана выдающимся французским физиком П. Ланжевеном и разработана им во время первой мировой войны для обнаружения подводных лодок. В настоящее время ультразвуковые локаторы используются для обнаружения айсбергов, косяков рыбы и т. п. Известно, что, крикнув и определив время до прихода эха, т. е. звука, отраженного от препятствий — скалы, леса, поверхности воды в колодце и т. д., — можно, умножив половину этого времени на скорость звука, найти расстояние до препятствия. На этом принципе устроен упомянутый выше локатор, а также ультразвуковой эхолот, который применяется для измерения глубины и снятия рельефа морского дна. Метод ультразвуковой локации позволяет летучей мыши хорошо ориентироваться при полете в темноте. Летучая мышь периодически испускает импульсы ультразвуковой частоты и по воспринимаемым с помощью органа слуха отраженным сигналам с большой точностью судит о расстояниях до окружающих ее предметов.
|
1 |
Оглавление
|