ГЛАВА VII. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ
§ 51. Намагничение магнетика
В предыдущей главе предполагалось, что провода, по которым текут токи, создающие магнитное поле, находятся в вакууме. Если несущие ток провода находятся в какой-либо среде, магнитное поле изменяется. Это объясняется тем, что всякое вещество является магнетиком, т. е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле В, которое накладывается на обусловленное токами поле Во. Оба поля в сумме дают результирующее поле
Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. Под В подразумевается усредненное (макроскопическое) поле (см. § 17).
Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи (молекулярные токи). Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается — его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле .
Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют намагниченностью и обозначают буквой J.
Если магнетик намагничен неоднородно, намагниченность в данной точке определяется следующим выражением:
где — физически бесконечно малый объем, взятый в окрестности рассматриваемой точки, — магнитный момент отдельной молекулы. Суммирование производится по всем молекулам, заклкь ченным в объеме (ср. с формулой (16.1)).
Поле В, так же как и поле не имеет источников. Поэтому дивергенция результирующего поля (51.1) равна нулю:
Таким образом, формула (49.2), а следовательно, и формула (49.1) справедливы не только для поля в вакууме, но и для поля в веществе.