Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 107. Энергия электромагнитных волнЭлектромагнитные волны переносят энергию. Согласно формуле (98.9) плотность потока энергии можно получить, умножив плотность энергии на скорость волны. Рассмотрим случай, когда электромагнитная волна распространяется в вакууме. В этом случае скорость волны равна с. Плотность энергии электромагнитного поля" w слагается из плотности энергии электрического поля и плотности энергии магнитного поля:
(см. формулы (30.2) и (67.7); для вакуума В данной точке пространства векторы Е и Н изменяются в одинаковой фазе. Поэтому соотношение (105.12) между амплитудными значениями Е и Н справедливо и для их мгновенных значений. Положив в (105.12)
Отсюда следует, что плотности энергии электрического и магнитного полей волны в каждый момент времени одинаковы:
(см. формулу (39.15)). Умножив найденное выражение для w на скорость волны с, получим модуль плотности потока энергии:
Векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему. Поэтому направление вектора [ЕН] совпадает с направлением переноса энергии, а модуль этого вектора равен ЕН. Следовательно, вектор плотности потока электромагнитной энергии можно представить как векторное произведение Е и Н:
Вектор S называется вектором Пойнтинга. Можно показать, что формула (107.4) оказывается справедливой и в случае, когда электромагнитная волна распространяется в диэлектрической или проводящей среде. По аналогии с формулой (98.13) поток Ф электромагнитной энергии через некоторую поверхность F можно найти с помощью интегрирования:
(в формуле (98.13) буква S обозначала поверхность; поскольку буквой S принято обозначать вектор Пойнтинга, нам пришлось обозначить поверхность буквой В качестве примера на применение формул (107.4) и (107.5) рассмотрим участок однородного цилиндрического проводника, по которому течет постоянный ток (рис. 107.1). Вначале будем считать, что на этом участке сторонние силы отсутствуют. Тогда согласно формуле (34.3) в каждой точке проводника выполняется соотношение
Постоянный ток распределяется по сечению провода с одинаковой плотностью j. Следовательно, электрическое поле в пределах изображенного на рис. 107.1 участка проводника будет однородным. Выделим мысленно внутри проводника цилиндрический объем радиуса
где V — объем цилиндра. Согласно (38.4) Теперь допустим, что в пределах рассматриваемого нами участка проводника действуют сторонние силы, поле которых однородно
Рис. 107.1. В этом случае согласно формуле (35.1) в каждой точке проводника имеет место соотношение
из которого вытекает, что
Будем считать, что сторонние силы на рассматриваемом участке цепи не противятся, а способствуют прохождению тока. Это означает, что направление Е совпадает с направлением j. Допустим, что выполняется соотношение Если же имеет место соотношение Резюмируя, можно сказать, что в замкнутой цепи постоянного тока энергия от участков, где действуют сторонние силы, передается другим участкам цепи не вдоль проводников, а через окружающее проводники пространство в виде потока электромагнитной энергии, характеризуемого вектором
|
1 |
Оглавление
|