§ 145. Поглощение света
При прохождении световой волны через вещество часть энергии волны затрачивается на возбуждение колебаний электронов. Частично эта энергия вновь возвращается излучению в виде вторичных волн, порождаемых электронами; частично же она переходит в энергию движения атомов, т. е. во внутреннюю энергию вещества. Поэтому интенсивность света при прохождении через вещество уменьшается — свет поглощается в веществе. Вынужденные колебания электронов, а следовательно, и поглощение света становятся особенно интенсивными при резонансной частоте (см. изображенную пунктиром кривую поглощения на рис. 144.2).
Опыт показывает, что интенсивность света при прохождении через вещество убывает по экспоненциальному закону:
(145.1)
Здесь — интенсивность света на входе в поглощающий слой (на границе или в каком-то месте внутри вещества), I — толщина слоя, — постоянная, зависящая от свойств поглощающего вещества и называемая коэффициентом поглощения.
Соотношение (145.1) носит название закона Бугера.
Продифференцировав соотношение (145.1), получим
(145.2)
Из этого выражения следует, что убыль интенсивности на пути пропорциональна длине этого пути и значению самой интенсивности. Коэффициентом пропорциональности служит коэффициент поглощения.
Из формулы (145.1) вытекает, что при интенсивность оказывается в раз меньше, чем Таким образом, коэффициент поглощения есть величина, обратная толщине слоя, при прохождении которого интенсивность света убывает в раз.
Коэффициент поглощения зависит от длины волны света X (или частоты ). У вещества, атомы (или молекулы) которого практически не воздействуют друг на друга (газы и пары металлов при невысоком давлении), коэффициент поглощения для большинства длин волн близок к нулю и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы (рис. 145.1).
Рис. 145.1.
Рис. 145.2.
Эти максимумы соответствуют резонансным частотам колебаний электронов внутри атомов. В случае многоатомных молекул обнаруживаются также частоты, соответствующие колебаниям атомов внутри молекул. Поскольку массы атомов в десятки тысяч раз больше массы электрона, молекулярные частоты бывают намного меньше атомных — они попадают в инфракрасную область спектра.
Газы при высоких давлениях, а также жидкости и твердые тела дают широкие полосы поглощения (рис. 145.2). По мере повышения давления газов максимумы поглощения, первоначально очень узкие (см. рис. 145.1), все более расширяются, и при высоких давлениях спектр поглощения газов приближается к спектрам поглощения жидкостей. Этот факт указывает на то, что расширение полос поглощения есть результат взаимодействия атомов друг с другом.
Металлы практически непрозрачны для света (коэффициент для них имеет значение порядка для сравнения укажем, что для стекла ).
Это обусловлено наличием в металлах свободных электронов. Под действием электрического поля световой волны свободные электроны приходят в движение — в металле возникают быстропеременные токи, сопровождающиеся выделением ленц-джоулева тепла. В результате энергия световой волны быстро убывает, превращаясь во внутреннюю энергию металла.