Глава 1. Математические основы
1.1. Тензоры и механика сплошной среды
Механика сплошной среды имеет дело с физическими величинами, которые не зависят от выбора системы координат, применяемой для их описания. Однако очень часто эти физические величины наиболее удобно изучать в некоторой надлежащим образом выбранной системе координат. Математически такие величины представляются тензорами.
Тензор как математический объект существует независимо от системы координат. В то же время в каждой системе координат его можно задать некоторой совокупностью величин, называемых компонентами тензора. Если компоненты тензора заданы в одной системе координат, то они определены и в любой другой системе, ибо определение тензора включает закон преобразования его компонент. Точные определения различных видов тензоров будут даваться далее в тех местах, где они впервые появятся в изложении.
Физические законы механики сплошной среды выражаются тензорными уравнениями. Вследствие линейности и однородности тензорных преобразований тензорные уравнения, верные в одной системе координат, верны и в любой другой. Такая инвариантность тензорных соотношений относительно преобразований координат является одной из основных причин того, что тензорное исчисление весьма полезно в изучении механики сплошной среды.