Главная > Аналоговые и цифровые фильтры
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.4.2. Вторая форма Кауэра

Если теперь мы исследуем или в точке а не в точке то можем получить вторую форму Кауэра. В данном случае рассмотрим входную функцию полного сопротивления Если является полюсом выделим полюс с помощью последовательного конденсатора. Это эквивалентно выражению

есть вычет при полюсе — остаточная функция полного сопротивления. Как и в случае первой формы Кауэра, отвечает всем свойствам входной -функции полного сопротивления. Кроме того, конечная величина: не является полюсом Поскольку в (6.60) выражается в виде суммы двух членов, можно реализовать включив конденсатор последовательно с С-двухполюсником, характеризующимся входной функцией полного сопротивления (рис. 6.11, а). Следовательно, задача реализации сводится к реализации более простой функции полного сопротивления Чтобы реализовать рассмотрим случай, когда не является полюсом . В этом случае сначала получим путем инверсии Согласно

условию 2б свойства входной -функции полной проводимости, можно выделить с помощью параллельного резистора, причем остаточная ПВ-функция все еще будет представлять входную -функцию полной проводимости. Это означает, что можно написать параллельно резистор.

— остаточная входная -функция полной проводимости. Из (6.61) видно, что можно реализовать, включив

Рис. 6.11. Основная процедура реализации второй формой Кауэра. является полюсом не является полюсом

Этот этап иллюстрируется рис. Заметим, что (6.61) подразумевает

Следовательно, является полюсом соответствующей входной -функции полного сопротивления означает,

Рис. 6.12. Схемная структура второй формы Кауэра. не является полюсом является полюсом

Это означает, что можно повторять процесс выделения последовательных конденсаторов и параллельных резисторов до тех пор, пока не будет завершена реализация схемы (рис. 6.12).

Пример 6.3. Реализовать второй формой Кауэра входную RС-функцию полного сопротивления

Решете. Поскольку имеет полюс в точке выделим этот полюс, найдя прежде всего его вычет , а затем записав в виде

— остаточная функция. Заметим, что -функция, отвечающая всем свойствам входной -функции импеданса. Этап (6.64) показан на рис. 6.13, а.

Рис. 6.13. Реализация входной RС-функции полного сопротивления (6.63) второй формой Кауэра.

Поскольку -конечная величина, рассмотрим

Выделив постоянную с помощью параллельного резистора, получим остаточную функцию в виде

Этот этап иллюстрируется рис. 6.13, б. Повторив предыдущую процедуру, выразим как

где 49/88 — вычет при полюсе а

Это дает

где

Схемная реализация (6.63) второй формой Кауэра, как она изложена выше, показана на рис. 6.13, в.

Заметим, что путем подстановки (6.71) в (6.70), затем в (6.68), затем в (6.67) и, наконец, в (6.64) получаем

Мы можем также получить (6.72) с помощью метода последовательных делений, расположив оба полинома (делимое и делитель) по убывающим степеням

Отметим, что (6.72) является разложением в непрерывную дробь для (6.63) в точке

Как и в случае LC-двухполюсников, при реализации входных -функций не требуется использовать на всех этапах этой процедуры какой-то один метод. Мы можем переходить от одной формы реализации к другой на любом этапе и как угодно часто. Иными словами, мы можем реализовать входную RC-функцию полного сопротивления или полной проводимости, сочетая формы Фостера и Кауэра.

Пример 6.4. Реализовать входную -функцию полного сопротивления

следующими способами:

1. Первой формой Кауэра с выделением двух конденсаторов.

2. Второй формой Кауэра с выделением одного конденсатора.

3. С реализацией остаточной функции второй формой Фостера.

Решение. Для получения первой формы Кауэра нам необходимо исследовать функцию полной проводимости

в точке Поскольку осуществим частичное разложение в непрерывную дробь при

Рис. 6.14. Схема реализации входной -функции полного сопротивления (6.73).

Этот этап реализован на рис. 6.14, а. Далее используем для частичной реализации вторую форму Кауэра. Для этого надо исследовать

в точке Поскольку является полюсом осуществим частичное разложение в непрерывную дробь при

Этот этап иллюстрируется рис. 6.14, б. Как требуют условия задачи, необходимо реализовать второй формой Фостера. Чтобы выполнить это осуществим разложение на простые дроби

и получим

Схемная реализация (6.73) согласно требованиям задачи — через (6.75), (6.78) и (6.81) — представлена на рис. 6.14,в.

1
Оглавление
email@scask.ru