Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8. Склерономные и реономные системы. Закон сохранения энергии.Во всех наших предыдущих рассуждениях мы не принимали во внимание наиболее характерную переменную всех задач динамики — время Раньше (см. 1.6) мы предполагали, что голономные кинематические связи имеют вид некоторых соотношений между координатами механической системы. Может случиться, однако, что подобное соотношение непрерывно меняется во времени, так что уравнение, выражающее такую связь, имеет вид
Это, например, происходит, когда некоторая точечная масса движется по поверхности, которая в свою очередь перемещается по заданному закону. Уравнение такой поверхности записывается в виде
В качестве другого примера укажем на маятник, длина которого непрерывно меняется посредством выбирания нити; в этом случае опять возникают дополнительные условия, явно зависящие от времени. Для того чтобы различать кинематические связи, зависящие и не зависящие явно от времени, Больцман ввел для них термины «реономные» и «склерономные». Наличие среди кинематических связей реономных связей приводит к тому, что при исключении их путем выбора соответствующих криволинейных координат в уравнения (1.2.8) войдет явно время:
Подобная же ситуация возникает и при отсутствии связей, зависящих от времени, если выбранные координаты относятся к движущейся системе отсчета. Реономные системы поддаются изучению аналитическими методами, но при этом пропадает ряд характерных следствий, имеющих место для склерономных систем. Это связано в первую очередь с тем, что дифференцирование уравнений (1.8.3) по времени приводит к выражениям
Если подставить эти выражения в определение кинетической энергии (1.5.9), то мы не получим чисто квадратичной формы обобщенных скоростей дополнительно возникнут новые члены, линейные относительно скоростей, а также члены, не зависящие от скоростей. В этом случае уже не могут быть в той же мере использованы соотношения римановой геометрии. Возвращаясь несколько назад, заметим, что время
В распространенном случае, когда силовая функция не зависит от скоростей, потенциальная энергия становится равной силовой функции, взятой с обратным знаком; при этом можно вообще обойтись без понятия силовой функции, считая кинетическую энергию В общем случае (1.8.5), однако, приходится возвратиться к силовой функции Действительно, фундаментальной величиной аналитической механики является не потенциальная энергия, а силовая функция, хотя физикам и инженерам более знакомо первое понятие. Во всех случаях, когда мы будем говорить о потенциальной энергии, молчаливо предполагается, что силовая функция имеет вид (1.7.6) и выполняется соотношение Для реономных систем не выполняются никакие законы сохранения, в то время как; для склерономных систем они имеют место. Поэтому склерономные системы часто относят к «консервативным системам». Резюме. Может случиться, что две основные величины механики, кинетическая энергия и силовая функция, содержат время в явном виде. Это происходит, когда некоторые из имеющихся кинематических связей зависят от времени, а также когда силовая функция есть явная функция времени (или, быть может, скоростей). Если и кинетическая энергия, и силовая функция склерономны, т. е. не зависят от времени, то из уравнений движения вытекает фундаментальная теорема, называемая законом сохранения энергии. Если хотя бы одна из основных величин реономна, т. е. зависит от времени, то такой закон сохранения не может быть получен.
|
1 |
Оглавление
|