Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.2. Оптическая накачкаВ случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы передается активной среде. На рис. 3.1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях активная среда имеет вид цилиндрического стержня, как это обычно встречается на практике. Его диаметр может быть от нескольких миллиметров до нескольких сантиметров, а длина — от нескольких сантиметров до нескольких десятков сантиметров. Лазер, очевидно, может работать в импульсном или в непрерывном режиме, в зависимости от того, является ли лампа накачки импульсной (лампа-вспышка) или непрерывной.
Рис. 3.1, Наиболее широко используемые системы оптической накачки. Изображенная на рис. 3.1, а лампа имеет форму спирали; при этом свет попадает в активную среду либо непосредственно, либо после отражения от зеркальной цилиндрической поверхности (указанной на рисунке цифрой 1). Такая конфигурация использовалась при создании первого рубинового лазера и до сих пор иногда применяется для импульсных лазеров. На рис. 3.2, б лампа имеет форму цилиндра (линейная лампа), радиус и длина которого приблизительно те же, что и у активного стержня. Лампа размещается вдоль одной из фокальных осей можно ближе друг к другу и плотно окружаются цилиндрическим отражателем (указан на рис. цифрой 1). Эффективность конфигурации с плотной упаковкой обычно ненамного ниже, чем в случае эллиптического цилиндра. Заметим, что часто вместо зеркально отражающих рефлекторов в схемах на рис. 3.1, а и в применяют цилиндры, изготовленные из диффузно отражающих материалов (таких, как спрессованные порошки
Рис. 3.2. Схемы накачки с двумя лампами. а — двухэллипсная конфигурация; б — конфигурация с плотной упаковкой. В непрерывных лазерах наиболее часто применяют криптоновые лампы высокого давления (1—8 атм) или вольфрам-иодные лампы. Питание постоянным током осуществляется от источника через подходящее балластное сопротивление (рис. 3.4).
Рис. 3.3. Электрическое возбуждение импульсной лампы с использованием внешней системы поджига (а) и системы с последовательным включением поджига (б). В этом случае для создания необходимой начальной степени ионизации к схеме должен быть подведен электрический импульс поджига, как правило, от последовательно включенного поджигающего устройства.
Рис. 3.4. Электрическое возбуждение непрерывной лампы. Для того чтобы лучше почувствовать условия, которые имеют место на практике, приведем на рис. 3.5, а два спектра излучения ксеноновой импульсной лампы накачки, работающей при типичных плотностях тока, а на рис. 3.5, б представим спектры поглощения ионов непрерывной криптоновой лампы с плотностью тока Рис. 3.5. (см. скан) а — спектр испускания ксеионовой импульсной лампы при давлении 500 мм рт. ст.; б — сечеиие поглощения иона Заметим, что в непрерывной лампе, в которой плотность тока существенно ниже, излучение сконцентрировано в линиях криптона, сильно уширенных вследствие высокого давления газа. В импульсной лампе плотность тока значительно выше, поэтому в ее спектр входит еще и широкая непрерывная компонента, обусловленная рекомбинационным излучением (рекомбинация ионов и электронов), а также тормозным излучением электронов, которые рассеиваются ионами при столкновениях. Таким образом, считается, что непрерывная составляющая пропорциональна произведению
Рис. 3.6. Спектр испускания непрерывной дуговой криптоновой лампы (внутренний диаметр 6 мм, длина дуги 50 мм, давление газа 4 атм, входная мощность Поскольку в нейтральном разряде
|
1 |
Оглавление
|