Главная > Квантовая теория поля, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.2. ДИАГРАММАТИКА

Рассматривавшиеся до сих пор борновские диаграммы, или древесные диаграммы, имели очень простой вид, поскольку они не требовали интегрирования по внутренним импульсам. Однако в общем случае мы имеем дело с более сложными диаграммами. В этом разделе мы изучим общие свойства фейнмановских диаграмм и приведем соответствующую терминологию. Ради простоты большая часть этого материала излагается, за немногими исключениями, на примере теории одного нейтрального скалярного поля.

6.2.1. Разложение по петлям

Разложение тесрии возмещений по петлям, т. е. разложение по возрастающему числу независимых петель связных фейнмановских диаграмм, можно рассматривать как разложение по степеням постоянной К. По определению число независимых петель есть не что иное, как число независимых внутренних 4-импульсов в диаграммах, когда в каждой вершине учтены законы сохранения. Для связных диаграмм с числом внутренних линий и вершин V мы имеем функций, выражающих закон сохранения, и с учетом сохранения входящих импульсов у нас остаются условий. Таким образом, число независимых импульсов, или петель, равно

Следует заметить, что L не есть число граней или замкнутых контуров, создаваемых внутренними линиями диаграммы

РИС. 6.22. Диаграмма «тетраэдр» имеет только три независимые петли.

Например, диаграмма в виде тетраэдра, приведенная на рис. 6.22, имеет четыре замкнутых контура, но лишь три независимые петли.

Чтобы найти связь между L и степенью величины h, соберем вместе все множители К. Мы не будем учитывать множитель h, который дает массовый член правильной размерности. Иными словами, уравнение Клейна—Гордона будем записывать в виде из которого следует, что массовый член имеет

как бы квантовое происхождение. В дальнейшем мы будем использовать этот факт. Таким образом, имеется два источника, приводящие к возникновению множителей Во-первых, множитель h включают в себя коммутационные (или антикоммутационные) соотношения, например вследствие чего k появляется в каждом пропагаторе

Во-вторых, входит явно в оператор эволюции следовательно, в оператор Таким образом, каждый пропагатор имеет множитель k, а каждая вершина — множитель . В диаграмме с числом внешних линий Е полная степень множителя равна Следовательно, при фиксированном числе внешних линий, т. е. для данной функции Грина, получаем результат, о котором было сказано в начале этбго раздела.

В системе единиц, где имеем следующие размерности. Для скалярного поля для константы связи X в это — (энергия и для спинорного поля Отсюда получаем правильную размерность для действия

или

Разумеется, диаграммы в низшем порядке по А представляют собой рассмотренные в предыдущем разделе борновские диаграммы без каких-либо петель.

Читатель может спросить, почему в теории с единственной константой связи топологическое разложение по петлям совпадает с разложением по степеням константы связи? Это совпадение обусловлено тем, что в такой теории существуют дополнительные соотношения между V, числом вершин (степенью величины . Рассмотрим, например, теорию подсчитывая полное число линий, входящих в каждую вершину, можно показать, что для диаграммы с числом внешних линий Е выполняется соотношение

Исключая отсюда с помощью (6.69), получаем (здесь Е — четное число).

1
Оглавление
email@scask.ru