Главная > Теория поглощения и испускания света в полупроводниках
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Несовершенства в кристаллических структурах.

Представление о кристалле как об идеально периодической структуре оказалось исключительно плодотворным в теории твердого тела. Оно позволило объяснить зонную структуру их энергетического спектра, дифракцию рентгеновских лучей и электронов, теплоемкость, многие электрические и оптические свойства. Однако в реальных кристаллах всегда имеются отступления от идеальной периодичности или дефекты. Некоторые дефекты ухудшают свойства кристаллов, и их число необходимо сводить к минимуму, другие, как например легирующие примеси, наоборот, придают полупроводникам такие свойства, благодаря которым и стало возможно их широкое применение в науке и технике. Искажения кристаллической решетки особенно сильно изменяют механические, электрические, тепловые и оптические свойства полупроводников. Часто они определяют пластичность, вязкость, теплопроводность и электропроводность материала.

В развитии физики реальных кристаллов основополагающими явились работы А. Ф. Иоффе [1], Я. И. Френкеля [20], В. Шоттки [21] и Ф. Зейтца [22, 23].

По геометрическим признакам все дефекты могут быть разделены на четыре класса: точечные, линейные, двумерные и объемные [24]. Точечные дефекты локализованы в объемах, меньших, чем размер одной ячейки кристаллической решетки. К ним относятся междуузельные атомы основного вещества кристалла, незанятые узлы кристаллической решетки (вакансии), примесные атомы, центры окраски, двойные и тройные вакансии, комплексы примесь вакансия, примесь — примесь и т. п. Линейные дефекты — это дислокации и микротрещины. Границы зерен и двойников, дефекты упаковки, межфазные границы и границы кристалла относятся к двумерным, или поверхностным, дислокациям. Включения в кристаллическую решетку другой фазы и микропустоты можно рассматривать как объемные дефекты.

Отсутствие атома в узле решетки называется дефектом Шоттки, совокупность пустого узла и близко расположенного междуузельного атома — дефектом по Френкелю. Дефекты по Френкелю образуются в результате смещения атома. Если смещенный атом уходит на большое расстояние, то этот дефект превращается в дефект Шоттки (рис. 5).

В. Шоттки считал, что вакансии в решетке образуются в результате сублимации атомов с поверхности кристалла. Затем путем последовательного перезамещения узлов решетки атомами вакансии диффундируют в глубь кристалла.

Дефекты образуются в результате тепловых колебаний решетки неизбежно и закономерно. Из термодинамики следует, что концентрация дефектов в расчете на 1 моль равна где число Авогадро; постоянная Больцмана; энергия образования дефекта; абсолютная температура, при которой выращивался кристалл. Энергии образования дефектов по Френкелю и по Шоттки лежат в пределах хотя первые несовершенства, как правило, характеризуются меньшим значением энергии, чем дефекты по Шоттки [1, 25—27].

Опыты показывают, что механическая прочность кристаллов часто на три-четыре порядка меньше, чем следует из теоретических представлений. Причина этого заключается в наличии в кристалле дислокаций. Дислокации могут быть краевые и винтовые, а также смешанного типа.

Краевая дислокация — это линейный дефект, вызванный появлением в кристалле лишней атомной полуплоскости. Ее можно представить также как результат смещения части кристалла перпендикулярно к дополнительной плоскости (рис. 6). Линия, ограничивающая полуплоскость, служит осью дислокации. Область, примыкающая к оси, где искажения структуры особенно велики, называется ядром дислокации, а более удаленные участки — упругой областью. За пределами ядра отклонения от идеальной структуры достаточно малы и хорошо описываются теорией упругих деформаций.

Винтовая, или спиральная, дислокация возникает в результате смещения одной части кристалла относительно другой на постоянную решетки, причем сдвиг параллелен оси дислокации (рис. 6).

Несмотря на микроскопические размеры дислокаций, они могут перемещаться по кристаллу, а при пластических деформациях происходит их размножение [28].

Рис. 5. Образование дефектов решетки: а — идеальная решетка; б — дефект по Шоттки; в — дефект по Френкелю

Рис. 6. Дислокации: а — краевая ось перпендикулярна плоскости чертежа; б - винтовая ось обозначена стрелкой

Упомянутые выше дефекты будут возникать даже в химически идеально чистых кристаллах. Однако избавиться от чужеродных атомов практически невозможно. Даже если вещество очищено до такой степени, что количество примесей составляет только 10-7%, то это все же означает наличие 1014 примесных атомов в кристалла. Поскольку примесные атомы могут решительным образом изменить электрические, оптические и другие свойства твердого тела, их введение широко используется при создании полупроводниковых приборов.

В зависимости от положения в кристаллической решетке могут быть примесп замещения и примеси внедрения. В первом случае чужеродный атом занимает в решетке место основного атома, во втором — некоторое промежуточное положение.

Если на внешней, валентной оболочке примесного атома больше электронов, чем на валентной оболочке замещаемого атома, то избыточные электроны оказываются как бы лишними с точки зрения химических связей. Они весьма слабо связаны с атомом и могут легко его покинуть и перемещаться в междуузлиях решетки. Такая примесь отдает свои электроны всему кристаллу и называется донорной, или донором.

Если же у примесного атома меньше валентных электронов, чем у атомов основного вещества, которые он замещает, то химические связи называются необеспеченными. Для того чтобы их обеспечить, примесный атом должен захватить дополнительные электроны от соседних атомов. В этом случае необеспеченная электроном химическая связь ведет себя как вакансия для электрона и называется дыркой, а примесь, создающая дырки, — акцепторной или просто акцептором.

Для соединений типа атомы металлов служат акцепторами, поскольку они принадлежат ко второй группе периодической системы элементов Д. М. Менделеева и замещают в кристалле трехвалентные атомы Наоборот, шестивалентный теллур, замещая пятивалентные играет роль донора.

Для кристаллов германия и кремния атомы индия и галлия — акцепторы, атомы мышьяка, фосфора и сурьмы — доноры. Атомы кремния в арсениде галлия могут быть и донорными и акцепторными примесями.

Электрон и дырка в кристалле могут вступить во взаимодействие и образовать связанный комплекс, называемый экситоном. Экситон не имеет заряда и не реагирует на электрическое поле, в то же время он может переносить энергию и во многом напоминает атом водорода. Различают экситоны малого радиуса (Френкеля) и экситоны большого радиуса (Ванье — Мотта). Последние можно представить как электрон и дырку, вращающиеся вокруг центра масс и перемещающиеся в целом по решетке. Существование экситонов подтверждается наличием в спектрах поглощения изоляторов и полупроводников резких линий, которые не связаны с широкими энергетическими зонами кристалла (§ 5).

Идеально периодическая решетка должна быть абсолютно жесткой. Движение ее узлов допустимо только при перемещении всей структуры как единого целого. В реальных же кристаллах атомы колеблются около точек равновесия и в любой момент времени имеются отступления от идеальной периодичности. Эти отступления увеличиваются с повышением температуры (§ 4).

В 50-х годах, особенно с началом космических исследований, широко развернулись работы по радиационным дефектам в полупроводниках. Эти дефекты возникают при прохождении через кристалл ядерных частиц высоких энергий: нейтронов, дейтронов, -частиц, осколков деления ядер, быстрых электронов, а также -квантов [29—35]. В большинстве случаев радиационные дефекты парные, вакансия и атом в междуузлии, т. е. относятся к точечным дефектам по Френкелю. Более сложные случаи рассмотрены в работах [36, 37].

1
Оглавление
email@scask.ru