Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10.2. Горячие электроныКогда электрическое поле прикладывается к полупроводнику или проводнику, носители заряда получают кинетическую энергию и появляется электрический ток. Кинетическая энергия зарядов случайным образом распределяется в популяции носителей заряда через их столкновения с кристаллической решеткой — процесс, который также увеличивает колебательную энергию самой решетки. Таким образом, популяция носителей и атомы решетки приобретают более высокую среднюю тепловую энергию, чем в состоянии равновесия, или, другими словами, они становятся горячее. В твердом теле существуют два механизма, ответственные за теплопроводность: один представляет собой перенос тепловой колебательной энергии волнами решетки, или фононами, а другой — перенос тепловой кинетической энергии подвижными носителями.
Рис. 10.1. Схематическое изображение зависимости скорости электронов от поля в кремнии. В металле обычно преобладает второй механизм вследствие высокой плотности электронов и, как результат, тепловая проводимость К растет (при фиксированной температуре) с ростом электрической проводимости а. Соотношение между К и а известно под названием закона Видемана — Франца [31]. В металле температуры решетки и популяции электронов (иногда называемой электронным газом) по существу совпадают. Иная ситуация в полупроводнике, где плотность носителей заряда может быть значительно меньше, чем в металле. В этом случае теплопроводность осуществляется преимущественно через фононы. Из этого следует, что, если кристалл располагается на подложке, обеспечивающей эффективный отвод тепла, решетка может оставаться относительно холодной, несмотря на то что носители заряда могут получать значительную кинетическую энергию от электрического поля. Если поле меньше величины приблизительно существенно увеличивается. Когда это условие преобладает, носители заряда с достаточным основанием называют «горячими». Свойства горячих носителей отличаются от свойств популяций носителей, находящихся в тепловом равновесии с решеткой. В частности, зависимость скорости дрейфа носителей от поля отклоняется от линейного закона, который выполнялся при более низких полях. Это иллюстрируется рис. 10.1, где скорость схематически изображена в виде функции приложенного поля для электронов в кремнии. Дырки в кремнии и оба типа носителей в германии имеют подобный тип зависимости. Из рисунка можно видеть, что по мере увеличения поля скорость дрейфа постепенно замедляет рост, пака наконец не достигнет насыщения. Насыщение происходит из-за электрон-фононных столкновений, которые, как можно показать, исходя из условий энергетического баланса, позволяют достигать скорости дрейфа, уже не зависящей от приложенного поля. Предельная скорость дрейфа в кремнии составляет приблизительно Горячие электроны — это энергетические носители заряда, которые могут, сталкиваясь с валентными электронами атомов в кристаллической решетке, выбивать эти электроны из валентной зоны с последующим их переходом в зону проводимости. Эти только что освобожденные электроны становятся при этом сами способными выбивать больше валентных электронов, которые в свою очередь освобождают еще больше валентных электронов, и т.д. Этот процесс является механизмом, ответственным за лавинный пробой. Лавинный пробой наблюдается в некоторых Обратносмещенные мощность порядка нескольких сотен ватт в диапазоне Вид зависимости скорости дрейфа от поля, имеющийся у носителей заряда в кремнии и германии, не обязателен для всех полупроводников. Некоторые полупроводники типа
Рис. 10.2. Схематическое изображение зависимости скорости электронов от величины поля в GaAs. В результате переноса в зависимости скорости от поля появляется область отрицательной дифференциальной подвижности. При достаточно высоких полях по существу все электроны находятся в зоне с низкой подвижностью и скорость насыщается точно таким же образом, как в кремнии или германии. Полупроводниковые материалы с областью отрицательной дифференциальной подвижности в зависимости скорости дрейфа от поля позволяют получать очень высокую (СВЧ) частоту колебаний тока при достаточно высоких полях смещения. Это явление было обнаружено Дж. Б. Ганном в 1963 г. [20], хотя и было предсказано в более ранней теоретической работе. В своих экспериментах Ганн наблюдал колебания тока на частоте около
|
1 |
Оглавление
|