Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10.4. Лавинный шумКак мы видели, лавинное умножение имеет место в областях сильного электрического поля, где кинетическая энергия свободных носителей заряда достаточна для ионизации атомов кристаллической решетки. Коэффициент ионизации для электронов а определяют как среднее число ионизирующих столкновений на единичном расстоянии дрейфа электрона. Коэффициент ионизации дырок определяется аналогично. Вообще говоря, а и Ионизирующее соударение высвобождает дырку и электрон, которые начинают перемещаться по полупроводнику в противоположных направлениях под влиянием элактрического поля, высвобождая во время дрейфа следующие пары дырка — электрон. Лавинный ток складывается из первичного така, а также вторичного, третичного и т.д. таков, обусловленных ударной ионизацией. В общем случае различных коэффициентов ионизации дырок и электронов алгебраическое исследование процесса умножения весьма громоздко. Однако специальный случай Так как электрическое поле и, следовательно, коэффициент ионизации а могут изменяться в области пространственного заряда, удобно ввести среднее значение а по лавинной зоне длины
Каждый подвижный носитель (дырка или электрон), пересекающий лавинную зону, высвобождает в среднем
Где
— коэффициент умножения. Когда стремится к бесконечности и происходит лавинный пробой. Так как а очень резко изменяется в зависимости от электрического поля, достаточно совсем небольшого изменения приложенного напряжения, чтобы вызвать лавину в диоде, что объясняет очень резкий характер изменения пробоя. Ионизирующие процессы, лежащие в основе процесса умножения, происходят случайно, создавая таким образом шум в токе лавинной ионизации. При низких частотах, значительно ниже частоты лавины, шум имеет «белый» спектр, который изменяется как коэффициент умножения в третьей степени. Ключ для понимания низкочастотных шумовых флуктуаций лавинного тока заключается в том, что любая пара дырка — электрон, появившаяся в лавинной зоне, приводит к образованию в среднем М подобных пар. Спектральную плотность лавинного шума определяют, рассматривая изменение электронного (или дырочного) тока на отрезке расстояния
где
Полагая, что процессы рождения пары по всему диоду независимы, спектральную плотность шума полного лавинного тока можно получить, интегрируя выражение (10.14) и суммируя его с вкладом от дробового шума, связанного с первичным током
где использованы формулы (10.11) и (10.12). Выражение (10.15) для спектральной плотности лавинного шума в случае равных коэффициентов ионизации для дырок и электронов вывел Тейджер [54]. В дальнейшем Мак-Интайр [37] обобщил это выражение на случай, когда коэффициенты ионизации для дыроок и электронов, хотя и не равны, но изменяются с изменением электрического поля таким образом, что
а если из электронов, то —
Аппроксимации в этих выражениях справедливы при 1. Заметим, что выражения (10.16) симметричны в том отношении, что одно из них преобразуется в другое заменой Если принять за норму спектральный уровень, определяемый формулой (10.15), из выражений (10.16) становится очевидно, что шум уменьшается, когда первичный ток состоит из дырок и коэффициент ионизации для дырок больше, чем для электронов (т. е. При выводе выражений (10.15) и (10.16) неявно подразумевается, что число ионизирующих столкновений при пролете носителя через лавинную область очень велико. Это позволяет исследовать лавинное умножение как непрерывный по пространству процесс. Ван-Влайет и Ракер [57, 58] ослабили условие непрерывности и исследовали процесс умножения как дискретное явление. Детали этой теории находятся вне сферы данного рассмотрения, но интересно отметить, что в современных лавинных диодах число ионизирующих столкновений за пролет носителя часто мало (порядка 2 или 3) [34]. В таких случаях может быть применима теория ван-Влайета и Ракера, а в предельном случае большого числа ионизирующих столкновений их данные согласуются с результатами Мак-Интайра.
|
1 |
Оглавление
|