Главная > Шумы в электронных приборах и системах
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10.4. Лавинный шум

Как мы видели, лавинное умножение имеет место в областях сильного электрического поля, где кинетическая энергия свободных носителей заряда достаточна для ионизации атомов кристаллической решетки. Коэффициент ионизации для электронов а определяют как среднее число ионизирующих столкновений на единичном расстоянии дрейфа электрона. Коэффициент ионизации дырок определяется аналогично. Вообще говоря, а и имеют различные численные значения, но оба коэффициента сильно зависят от электрического поля.

Ионизирующее соударение высвобождает дырку и электрон, которые начинают перемещаться по полупроводнику в противоположных направлениях под влиянием элактрического поля, высвобождая во время дрейфа следующие пары дырка — электрон. Лавинный ток складывается из первичного така, а также вторичного, третичного и т.д. таков, обусловленных ударной ионизацией.

В общем случае различных коэффициентов ионизации дырок и электронов алгебраическое исследование процесса умножения весьма громоздко. Однако специальный случай значительно проще, и именно на примере этого случая рассмотрим основы умножения тока и лавинного шума.

Так как электрическое поле и, следовательно, коэффициент ионизации а могут изменяться в области пространственного заряда, удобно ввести среднее значение а по лавинной зоне длины

Каждый подвижный носитель (дырка или электрон), пересекающий лавинную зону, высвобождает в среднем пар дырок и электронов. Полное расстояние, преодолеваемое составляющими такой пары, равно поскольку они дрейфуют в противоположных направлениях, и таким образом каждая пара образует в среднем следующих пар. Следовательно, если первичный ток, то ток после умножения имеет вид

Где

— коэффициент умножения. Когда равно единице, М

стремится к бесконечности и происходит лавинный пробой. Так как а очень резко изменяется в зависимости от электрического поля, достаточно совсем небольшого изменения приложенного напряжения, чтобы вызвать лавину в диоде, что объясняет очень резкий характер изменения пробоя.

Ионизирующие процессы, лежащие в основе процесса умножения, происходят случайно, создавая таким образом шум в токе лавинной ионизации. При низких частотах, значительно ниже частоты лавины, шум имеет «белый» спектр, который изменяется как коэффициент умножения в третьей степени. Ключ для понимания низкочастотных шумовых флуктуаций лавинного тока заключается в том, что любая пара дырка — электрон, появившаяся в лавинной зоне, приводит к образованию в среднем М подобных пар. Спектральную плотность лавинного шума определяют, рассматривая изменение электронного (или дырочного) тока на отрезке расстояния вследствие образования пары дырка — электрон под действием ударной ионизации. Изменение дырочного тока описывается формулой

где полный ток, протекающий в лавинной области [определяется выражением (10.11)]. Ток одинаков в любом месте прибора. Приращение тока в формуле (10.13) определяется чисто дробовым шумом и, следовательно, имеет спектральную плотность (исключая постоянную компоненту тока). Так как ток, протекающий через диод благодаря рождению пары дырка — электрон на отрезке равен спектральная плотность связанного с ним лавинного шума имеет вид

Полагая, что процессы рождения пары по всему диоду независимы, спектральную плотность шума полного лавинного тока можно получить, интегрируя выражение (10.14) и суммируя его с вкладом от дробового шума, связанного с первичным током

где использованы формулы (10.11) и (10.12).

Выражение (10.15) для спектральной плотности лавинного шума в случае равных коэффициентов ионизации для дырок и электронов вывел Тейджер [54]. В дальнейшем Мак-Интайр

[37] обобщил это выражение на случай, когда коэффициенты ионизации для дыроок и электронов, хотя и не равны, но изменяются с изменением электрического поля таким образом, что , где постоянный коэффициент пропорциональности. Мак-Интайр обнаружил, что если первичный ток целиком состоит из дырок, то спектральная плотность шума имеет вид

а если из электронов, то —

Аппроксимации в этих выражениях справедливы при 1. Заметим, что выражения (10.16) симметричны в том отношении, что одно из них преобразуется в другое заменой на

Если принять за норму спектральный уровень, определяемый формулой (10.15), из выражений (10.16) становится очевидно, что шум уменьшается, когда первичный ток состоит из дырок и коэффициент ионизации для дырок больше, чем для электронов (т. е. а также когда первичный ток состоит из электронов и коэффициент ионизации для электронов больше, чем для дырок (т. е. Экспериментальное подтверждение поведения, предсказанного выражениями (10.16), было получена несколькими исследователями, в том числе Мельхиором и Андерсеном [39]. Мельхиором и Линчем [40], Бертчем [1,2] и Конради [12].

При выводе выражений (10.15) и (10.16) неявно подразумевается, что число ионизирующих столкновений при пролете носителя через лавинную область очень велико. Это позволяет исследовать лавинное умножение как непрерывный по пространству процесс. Ван-Влайет и Ракер [57, 58] ослабили условие непрерывности и исследовали процесс умножения как дискретное явление. Детали этой теории находятся вне сферы данного рассмотрения, но интересно отметить, что в современных лавинных диодах число ионизирующих столкновений за пролет носителя часто мало (порядка 2 или 3) [34]. В таких случаях может быть применима теория ван-Влайета и Ракера, а в предельном случае большого числа ионизирующих столкновений их данные согласуются с результатами Мак-Интайра.

1
Оглавление
email@scask.ru