Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
11.3. Квантовый предел для шума усилителяЭлектромагнитное излучение проявляет дуализм в своем поведении, оказываясь по характеру то корпускулярным (как в фотоэлектрическом эффекте), то волноподобным (как в явлениях интерференции). Смысловой аспект этого «раздвоения», наблюдаемого на практике, целиком зависит от проводимого эксперимента. Вообще говоря, было бы значительно проще описывать все эксперименты, связанные с электромагнитным излучением исключительно либо с корпускулярной, либо с волновой точки зрения, однако это невозможно. Необходимость использования дуального представления является общепризнанной. Корпускулярное описание поля было предложено Эйнштейном [2], который ввел кванты энергии (или фотоны) электромагнитного поля. Согласно Эйнштейну, общая энергия Е поля излучения на частоте
где
Таким образом, мы имеем два уравнения, каждое из которых отражает различные аспекты характера поля. Одно из этих уравнений содержит энергию Е, другое — время
получаем
Этот результат отражает дуальный характер поля излучения, показывая, что измерения, основанные на корпускулярном и волновом представлениях поля, не являются независимыми: информация об одном из них получается за счет информации о другом. Принцип неопределенности в виде выражения (11.13) можно использовать для установления квантового предела шумов линейного усилителя [7]. Удобно провести доказательство применительно к мазеру, название которого рассматривается здесь как обобщенный термин, употребляемый для обозначения устройств, усиливающих излучение при прохождении его через возбужденную молекулярную среду за счет индуцированного излучения, в том числе лазеров, иразеров и т. д. Для настоящего рассмотрения достаточно оставить пока в стороне микроскопическую картину работы мазера, речь о которой пойдет в следующей главе, и сконцентрировать внимание на простой модели, изображенной на рис. 11.2. Падающее излучение, имеющее спектральную плотность
где а — коэффициент поглощения на частоте излучения. Если мазер функционирует как усилитель, величина а будет отрицательной и интенсивность на выходе превосходит интенсивность на входе, т. е. система обеспечивает усиление. Тогда количества фотонов
где
Рис. 11.2. Прохождение электромагнитного излучения через поглощающую среду толщиной
Рис. 11.3. Усилитель с коэффициентом усиления Поскольку усиление является когерентным процессом, фазы на входе и выходе
Предположим теперь, что после усилителя включен детектор (рис. 11.3), который является «идеальным» в том смысле, что он наилучший из возможных в пределах ограничений, налагаемых принципом неопределенности. Таким образом, детектор обеспечивает измерение числа фотонов
Следовательно, если бы усилитель не имел собственных шумов, ошибки измерения числа фотонов и фазы на входе удовлетворяли бы условию
Это невозможно, поскольку противоречит принципу неопределенности, а следовательно, гипотеза о том, что усилитель не имеет собственных шумов, несправедлива. Усилитель должен вводить некоторую неопределенность в измерение, или, другими словами, он всегда будет иметь шумы. Хотя такое рассуждение устанавливает существование минимального уровня шума в усилителе, оно не позволяет оценить этот уровень. Однако такую оценку можно получить, используя дополнительное условие согласования усилителя с детектором. Тогда уровень квантовых флуктуаций поля излучения [5] получается как условие минимального шума. Из расчетов, приведенных в приложении 7, следует, что минимальная мощность шума на выходе усилителя, определенная в полосе частот
Относя ее ко входу, т. е. разделив на коэффициент усиления Этот вывод представляет интерес в связи с тем, что мощность шума, генерируемая сопротивлением (как показано в следующем разделе), в пределе низких температур равна Рассуждение, приведенное выше, является довольно общим в том смысле, что оно применимо к любому линейному усилителю, который описывается уравнениями (11.15) и (11.16). Примером такого «совершенного» устройства является мазер; теоретически минимальная обнаруживаемая мощность на входе мазера точно описывается выражением 11.19, которое, как мы видим, дает наилучший достижимый результат. Принцип действия мазера и механизмы шумов, возникающих в нем, будут обсуждаться в разд. 11.5 и 11.6.
|
1 |
Оглавление
|