§ 17. ИНДУЦИРОВАННОЕ ГРАВИТАЦИОННОЕ ИЗЛУЧЕНИЕ
 
Взаимодействие пробной частицы в поле Керра с гравитационными волнами
 
Взаимодействие пробных тел, движущихся по круговым орбитам в поле Шварцшильда или Керра, с гравитационными волнами может иметь характер отрицательного поглощения. Для расчета эффекта нужно рассмотреть вынужденные колебания  
 
пробной массы под действием поля гравитационных волн, фазу которых будем считать случайной величиной. 
Представим метрический тензор в виде  где
 где  метрика фонового пространства-времени,
 метрика фонового пространства-времени,  добавка, описывающая поле (слабых) гравитационных волн. Линеаризованное по
 добавка, описывающая поле (слабых) гравитационных волн. Линеаризованное по  уравнение движения частицы имеет вид
 уравнение движения частицы имеет вид 
 
где поправки к символам Кристоффеля равны 
 
Ввиду малости  ищем приближенное решение (1) в виде
 ищем приближенное решение (1) в виде 
 
выбирая в качестве новозмущенной траектории окружность в плотскости  т. е.
 т. е. 
 
В дальнейшем индекс нуль у величин, относящихся к фоновой метрике, будем опускать. 
Переходя к параметру  связанному с
 связанному с  соотношением
 соотношением  в линейном по приближении, получим систему уравнений, «совпадающую с (16.1) — (16.2), причем
 в линейном по приближении, получим систему уравнений, «совпадающую с (16.1) — (16.2), причем 
 
Рассмотрим вынужденные колебания частицы под действием гравитационных волн  Представим поле
 Представим поле  в виде разложения
 в виде разложения 
 
а поправки  с помощью фурье-преобразования (16.8). Решение системы имеет вид
 с помощью фурье-преобразования (16.8). Решение системы имеет вид  где под следует понимать
 где под следует понимать 
