Главная > Прикладная статистика: Исследование зависимостей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ВЫВОДЫ

1. При исследовании параметрических моделей регрессии наиболее распространенным типом оптимизируемого (с целью нахождения оценок неизвестных значений параметров регрессии) критерия адекватности модели является взвешенный или обобщенный) критерий наименьших квадратов (см. (9.1), (9.2)). Следует стремиться к построению таких вычислительных алгоритмов решения оптимизационных задач, которые наряду с решениями этих задач — значениями оценок неизвестных параметров -давали бы необходимые характеристики их точности (оценки элементов ковариационных матриц, доверительные области и т. п.).

2. Наибольшее распространение среди методов поиска оценок наименьших квадратов получили алгоритмы итерационного типа, позволяющие на каждой следующей итерации получать приближенные значения искомых оценок параметров, лежащие «ближе» к истинному решению соответствующей оптимизационной задачи, чем значения предыдущей итерации, т. е. где — номер итерации; вектор, определяющий направление движения на итерации; — длина шага. Если движение осуществляется в направлении под острым углом к антиградиенту оптимизируемой функции, то алгоритм относится к классу алгоритмов квазиградиентного типа.

3. Если движение в итерационной процедуре уточнения значений оценок параметров осуществляется непосредственно в направлении антиградиента, то процедуру относят к алгоритмам градиентного спуска. Подобные алгоритмы обеспечивают (при определенных ограничениях на минимизируемую функцию) сходимость последовательности со скоростью геометрической прогрессии (линейная сходимость). Из-за того, что реальная скорость сходимости таких алгоритмов резко снижается при приближении к предельному значению 0, градиентный спуск целесообразно применять лишь на начальных этапах минимизации, используя найденные в результате сравнительно небольшого числа итераций величины в качестве начальных приближений для более сложных методов, обладающих большей скоростью сходимости.

4. В методе Ньютона значения неизвестных параметров на каждой следующей итерации находятся из условия минимума квадратичного полинома, аппроксимирующего исходную критериальную функцию в окрестности точки При этом соответствующая процедура будет менее чувствительна к выбору начального приближения (в частности, будет менее подвержена эффекту «раскачки» при его неудачном выборе), если использовать ее вариант с регулировкой шага. При определенных условиях метод Ньютона обеспечивает квадратичную скорость сходимости последовательности к .

5. Используя линейную (по параметрам) аппроксимацию исследуемой функции регрессии в окрестности точки можно прийти к модификации метода Ньютона — методу Ньютона—Гаусса. Он существенно проще в вычислительном плане, однако бывает слишком чувствительным к эффекту слабой обусловленности используемых в нем матриц Скорость сходимости этого метода в зависимости от условий, накладываемых на регрессионную функцию и свободные параметры алгоритма, может быть линейной, сверхлинейной или квадратичной.

6. Существенным недостатком методов квазиградиентного типа, в том числе метода Ньютона, метода Ньютона—Гаусса и других, является необходимость подсчета производных от искомых регрессионных функций на каждой итерации. Основная идея, на которую опираются методы, позволяющие обходиться без подсчета производных, заключается в использований на итерации информации, полученной на предыдущих s итерациях, для построения разумных аппроксимаций для элементов матриц, определяющих выбор направления и шаг движения к решению .

7. Первостепенное значение для скорости сходимости используемых итерационных процедур решения оптимизационной задачи метода наименьших квадратов имеет удачный выбор начального приближения . Для реализации этого выбора используется ряд приемов: «поиск на сетке» (п. 9.6.1), вспомогательное преобразование (линеаризующее) модели (п. 9.6.2), разбиение Имеющейся выборки на подвыборки (п. 9.6.3), разложение регрессионной функции в ряд Тейлора (п. 9.6.4).

8. При вычислительной реализации метода наименьших квадратов в нелинейном (по оцениваемым параметрам 0) случае приходится исследовать вопросы существования и единственности решения. Необходимо помнить, что используемые (в том числе все описанные выше) методы оптимизации приводят в лучшем случае лишь к локальному минимуму критериальной функции. Проверка того, является ли этот минимуму глобальным, является следующей, зачастую не менее трудоемкой, вычислительной операцией.

1
Оглавление
email@scask.ru