Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
13.5. Ковариационный анализ (КА) и проблема статистического исследования смесей многомерных распределений13.5.1. Определение и модель ковариационного анализа.Следуя [6], определим ковариационный анализ (КА) как совокупность методов и результатов, относящихся к математико-статистическому анализу моделей, предназначенных для исследования зависимости среднего значения некоторого количественного результирующего показателя у от набора неколичественных факторов Неколичественные факторы Среди индикаторных и сопутствующих переменных могут быть как случайные, так и не случайные (контролируемые в эксперименте). Основные теоретические и прикладные разработки по КА относятся к линейным моделям. В частности, если анализируется схема из
где индикаторные переменные Если в (13.28) постулировать априори Считается, что термин «КА» введен Р. А. Фишером в связи с рассмотрением одной частной схемы этой модели в § 49 144-го издания книги «Статистические методы для исследователей» (пер. с англ.-М.: Статистика, 1958). Весьма полные сведения по современным методам КА можно найти в [29, 66, 119, 148]. 13.5.2. Оценивание неизвестных значений параметров и проверка гипотез в модели КА.Запишем линейную модель КА (13.28) в матричном виде:
или
где Для нахождения оценок Однако можно добиться существенного упрощения анализа за счет использования специального строения матрицы 1. В модели (13.28) полагаем
где 2. Заменяем в (13.29) Y на
откуда
3. Подсчитывается остаточная сумма квадратов для общей модели (13.28) ковариационного анализа, равная [119, п. 3.7.11:
4. Для получения оценок Проверка гипотез относительно параметров
которая в предположении справедливости гипотезы 13.5.3. Связь с проблемой статистического исследования смесей многомерных распределений.Посмотрим на модель регрессии результирующего показателя
зависящей от параметров регрессии
зафиксированные при различных типах условий эксперимента Игнорирование этого обстоятельства является причиной многих недоразумений и неудач в прикладных исследованиях, опирающихся на аппарат регрессионного анализа. Для объяснения этого обстоятельства представим себе, что при исследовании линейной парной регрессионной зависимости исходные данные В то же время, если предварительно (или одновременно с решением задач регрессии) разбить имеющиеся данные на однородные (по условиям эксперимента) подвыборки и строить функции регрессии отдельно для каждой такой подвыборки, то удастся установить тесную статистическую зависимость между исследуемыми переменными. Ковариационный анализ предоставляет исследователю один из возможных подходов к реализации описанной схемы. Другие подходы опираются на статистический анализ смесей многомерных распределений: оценку параметров смеси распределений [11], модели типологической регрессии [4, 11, 82].
Рис. 13.1. Прямые 1, 2 и 3 — графики аппроксимирующих функций регрессии, построенных соответственно по наблюдениям подвыборок: 1 (точки), 2 (крестикн) и по объединенной выборке, состоящей из тех и других наблюдений Подробное описание этих методов предполагается дать в следующем томе данного издания.
|
1 |
Оглавление
|