Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Рассмотрим динамическую систему с одной степенью свободы. Уравнения движения в канонической гамильтоновой форме будут иметь вид: где В случае двух степеней свободы предположим, что уравнения движения даны в гамильтоновой форме где где где причем и Предыдущие уравнения определяют направление линии тока в любой точке пространства. Движения динамической системы изображаются линиями тока трехмерной жидкости, находящейся в стационарном движении. Рассмотрим плоскости Возьмем в плоскости Преобразование Это означает, что поток, для которого Во-вторых, если мы рассмотрим маленькую замкнутую кривую в плоскости равен единице. Если Теперь возникает интересный вопрос о том, существует ли обратно динамическая задача рассматриваемого типа для каждого такого преобразования определяют сохраняющее площади преобразование Было бы чрезвычайно интересно доказать подобную же теорему для аналитических функций. В окрестности начала координат преобразование Получающееся преобразование зависит от параметра При изменении где Произведем теперь деформацию области где постоянная Если мы произведем эту деформацию области то мы получим преобразованную систему кривых, для которых соответственные функции Пусть теперь каждая точка где инвариантен. Здесь функция Определим теперь деформацию пространства Это преобразование, очевидно, периодично в желательном смысле и оставляет на своих местах точки плоскостей где Но эго означает, что существует функция Другими словами, данное преобразование, сохраняющее площади, соответствует динамической задаче рассматриваемого типа. Это замечание показывает, что в случае преобразования, рассматриваемого Пуанкаре в его последней геометрической теореме, свойство сохранять площади действительно является характерным для этого преобразования. Оно показывает также, как динамическая задача может приводить скорее к рассмотрению преобразования вблизи инвариантной точки или вблизи замкнутой инвариантной кривой, в которую такая точка может быть растянута, чем к преобразованию, определенному во всем кольце, как требуется в теореме Пуанкаре. По этой именно причине я видоизменил теорему Пуанкаре, распространив ее на преобразования этого более общего типа, которые представляются более пригодными для многих динамических приложений. Действительно, более подробное рассмотрение этих приложений показывает, что для многих целей видоизмененная теорема Пуанкаре достаточна, если только аналитические детали исследованы С точки зрения топологии трансляционную теорему Браувера о преобразованиях плоскости можно рассматривать как трактующую вопрос о топологических отображениях сферы с одной единственной инвариантной точкой. Аналогичным образом надлежащее обобщение теоремы Пуанкаре
|
1 |
Оглавление
|